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SUMMARY
Significant evidence supports the view that dopamine shapes learning by encoding reward prediction errors.
However, it is unknown whether striatal targets receive tailored dopamine dynamics based on regional func-
tional specialization. Here, we report wave-like spatiotemporal activity patterns in dopamine axons and
release across the dorsal striatum. These waves switch between activational motifs and organize dopamine
transients into localized clusters within functionally related striatal subregions. Notably, wave trajectories
were tailored to task demands, propagating from dorsomedial to dorsolateral striatum when rewards are
contingent on animal behavior and in the opponent direction when rewards are independent of behavioral
responses. We propose a computational architecture in which striatal dopamine waves are sculpted by infer-
ence about agency and provide a mechanism to direct credit assignment to specialized striatal subregions.
Supporting model predictions, dorsomedial dopamine activity during reward-pursuit signaled the extent of
instrumental control and interacted with reward waves to predict future behavioral adjustments.
INTRODUCTION

Dopamine (DA) supports reward learning and motivated behav-

iors, but precisely what information it encodes and how it arrives

at postsynaptic targets remain unclear (Berke, 2018; Berridge,

2007; Collins and Frank, 2014; Schultz, 2016). According to the

reward prediction error (RPE) hypothesis, transients in DA

signaling reflect deviations from reward expectation that drive

reinforcement learning (RL) (Montague et al., 1996; Schultz

et al., 1997). This formulation generally treats DA as a ‘‘global’’

(spatiotemporally uniform) signal, a view based on two key find-

ings. First, DA axon projections to the forebrain are extensively

divergent (Matsuda et al., 2009; Prensa and Parent, 2001),

providing an architecture for broadcast-like communication. Sec-

ond, midbrain DA neuron spikes are highly synchronized (Hyland

et al., 2002; Li et al., 2011), putatively implementing a code for

RPEs (Eshel et al., 2016; Joshua et al., 2009; Kim et al., 2012; Mo-

hebi et al., 2019). These observations form the basis for an influ-

ential view (Glimcher, 2011; Kim et al., 2020; Schultz, 1998) of

what DA communicates and how it is delivered: scalar RPEs

that are uniformly broadcast to all recipient subregions.

It remains debated, however, whether DA signals convey such

scalar, uniform decision variables. In the midbrain, DA neurons

are reported to encode multiple behavior- and stimulus-specific

features (Engelhard et al., 2019; Sharpe et al., 2018), or distribu-
tions of reward outcomes in an RPE framework (Dabney et al.,

2020). Moreover, the major subregions of the striatum receive

vastly different patterns of DA following unpredicted reward de-

livery (Brown et al., 2011), during motivated pursuit (Hamid et al.,

2016; Shnitko and Robinson, 2015), and to conditioned stimuli

(Menegas et al., 2017). If regional heterogeneity is an adaptive

feature of striatal DA dynamics, what are the organizational rules

for large-scale DA transmission, and how do they facilitate

computational/circuit operations in the service of behavioral

flexibility?

An important clue is the functional architecture of hierarchical

corticostriatal loops (Graybiel, 2008; Haber, 2003), wherein mul-

tiple striatal ‘‘actors’’ (or subregions) gate the selection of cortical

actions at various functional levels of abstraction (Balleine et al.,

2015; Frank, 2011). A global DA RPE would equally reinforce all

of these circuits, leading to inefficient learning when only a sub-

set of them are responsible for rewards. Indeed, in theoretical

models, robust learning in complex tasks requires RPEs that

are preferentially directed to ‘‘credit’’ striatal actors/subregions

in proportion to the extent of their participation in action selection

(Frank and Badre, 2012; O’Reilly and Frank, 2006). While such

regional, actor-specific striatal RPEs are reported in human

fMRI studies (Badre and Frank, 2012; Gershman et al., 2009),

we currently lack an empirical demonstration of whether

DA signals are tailored to subregions according to their
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functional/computational specialty. Here, we used widefield im-

aging to assay DA dynamics over large territories of the dorsal

striatum. We report spatiotemporally heterogeneous DA re-

sponses characterized by wave-like patterns that are regionally

tailored to striatal targets as a function of task demands and pre-

dict animal’s behavioral adjustments.

RESULTS

Related striatal subregions receive correlated DA input
We set out to study the large-scale organization of DA responses

across the dorsal striatum (DS). Standard methods for DA assay

have restricted spatial scale (10–100 s of micrometers); we over-

came these limitations by injecting a cre-dependent fluorescent

calcium indicator GCaMP6f into the midbrain of mice expressing

cre recombinase selectively in DA cells (DAT-cre mice) and

captured DA-axon dynamics through an ~7 mm2 chronic imag-

ing window over the DS (Figure 1A). This approach provided op-

tical access to 60%–80% of the dorsal surface of the mouse

striatum, with a view of dorsomedial (DMS), dorsolateral (DLS),

and partial access to the posterior-tail (TS) region of the striatum

(Figure 1B). A separate group ofmice received striatal injection of

the fluorescent DA sensor dLight followed by window surgery.

We combined DA activity indicators with the expression of tdTo-

mato to simultaneously capture inert red frames under dual-co-

lor, head-fixed preparations at multiple levels of resolution with

one- or two-photon microscopy.

We first focused on spontaneous DA signals in a dark chamber

without external stimuli. To test whether DA responses are glob-

ally synchronized, we compared fluorescence signals in DS re-

gions of interest (ROIs) (Figure 1B). While ROIs were sometimes

globally synchronized,weobservedevidenceof decorrelatedac-

tivity across striatal subregions that temporally evolved (Figures

1Cand1D). This regional variabilitywasobservedboth inDAcon-

centration and axonal calcium signals (dLight andGCaMP6f fluo-

rescence) and was also apparent on the micrometer scale of DA

terminals (FigureS1A).Moreover,DAactivity showedstrong local

correlations that gradually decreased with anatomical distance

(Figures 1E andS1B), comparablewith the organization of striatal

spiny-neuron activity (Klaus et al., 2017; Parker et al., 2018; Shin

et al., 2020). Strikingly, this distance-dependent falloff had a

strong bias toward the mediolateral (ML) axis (Figure 1F; two-

way ANOVA with significant main effect of direction, F(1,7) =

82.3, p = 4.0 3 10�5 for 8 GCaMP6f mice and F(1,5) = 71.7, p =

3.7 3 10�4 for 6 dLight mice) that was not observed in simulta-

neously captured tdTomato frames (p > 0.4). Together, these

results demonstrate that DA inputs can become recruited asyn-

chronously (Howe and Dombeck, 2016), hinting that the global

DA hypothesis may need to be refined.

To further examine the topographical organization of DS DA,

we used standard clustering analyses (Figure 1G). In every data-

set (n = 76 sessions from8GCaMP6fmice and 6dLightmice), the

highest cluster threshold identified two contiguous territories in

the field of view (Figures 1H–1J), outlining well-established DS

subregions: DMS and DLS striatum (Balleine et al., 2007; Gray-

biel, 2008; Yin and Knowlton, 2006). Increasing cluster limits pro-

gressively revealed smaller areas of DS (Figures 1H and S1F and

S1G), resembling striatal subdomainspreviously identifiedbased
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on glutamatergic input patterns and behavioral specialty (Hin-

tiryan et al., 2016; Hooks et al., 2018; Hunnicutt et al., 2016; Mat-

amales et al., 2020). We did not observe these territories when

clustering control tdTomato frames, and shuffling the pixel-wise

spatial (or temporal) order of GCaMP6f and dLight signals pro-

duced randomclusters. Together, these results provide evidence

for regional coordination of DA transmission and served as an

initial basis for evaluating whether DA inputs are modulated by

the underlying subregion’s computational specialty.

Wave-like patterns coordinate DA activity across the DS
We next noted that the distance dependence of correlated DA

activity patterns reflected an underlying organization of spatio-

temporally continuous trajectories. In particular, both GCaMP6f

and dLight fluorescence initiated in localized striatal zones and

migrated across DS as DA axons become sequentially recruited

to affect DA release in spatially contiguous regions (Figures 2A

and S2; Video S1). These trajectories, which we quantify below,

resembled those described as traveling waves in cortical and

subcortical brain regions (Grinvald et al., 1994; Lubenov and Sia-

pas, 2009; Mohajerani et al., 2013; Muller et al., 2014, 2018).

From here on, we use the ‘‘DAwave’’ terminology as a shorthand

to describe the spatiotemporally continuous, flow-like patterns

of dopaminergic activity across DS.

To quantitatively characterize these DA trajectories, we lever-

aged optic flow algorithms that extract frame-by-frame flow fields

(Afrashteh et al., 2017; Townsend and Gong, 2018; see STAR

Methods for details). The transient activation in DA axons (and

release) originated from spatially clustered ‘‘source’’ regions

defined by divergent vectors that signify outward flow (Figures

2B and S2A). Once initiated, fluorescence migrated to neigh-

boring striatal regions before terminating as a result of flow toward

‘‘sink’’ locations (Figure 2B). DA waves entered the DSwith expo-

nentially decaying inter-wave intervals (Figures 2D and 2E) and

propagated with a range of velocities (Figures 2F and 2G). More-

over, the overall direction of flow was bimodally distributed (Fig-

ures 2H and 2I; Omnibus test for angular uniformity; GCaMP6f

sessions p < 10�4, dLight sessions p < 10�3), significantly biased

to a ML propagation axis that was not present in simultaneously

acquired tdTomato frames (Figure 2I; p > 0.4).

The flow-like property exhibited similar statistics for DA axon

activation and release (Figures 2E–2G), indicating that axonal

excitation and release may be coupled. To concretely test this

possibility, we made dual-color widefield recordings in 4 DAT-

cre mice with cre-dependent, red-shifted calcium indicator

jRGECO1a injected into the midbrain and dLight broadly ex-

pressed in the DS (Figure S3A). Indeed, we found strong

coupling between the simultaneously acquired dLight and

jRGECO1a spatiotemporal flow patterns (Figures 2J, 2K, and

S3B–S3D), with highly correlated temporal dynamics in the ma-

jor striatal subdivisions that was not affected by the locomotor

state of the mice (Figures S3E and S3F).

We also examined whether the complex DA trajectories re-

sulted from various imaging artifacts and/or damage to cortex

and glutamatergic afferents during surgery for cannula implanta-

tion. We first ruled out the contribution of imaging artifacts

related to locomotion and blood flow by imaging multiple DA ac-

tivity sensors with spectrally separated inert fluorophores that



Figure 1. DA dynamics are similar in nearby DS territories

(A) Schematic of the methods to achieve DA imaging. Fluorophores are first virally transfected (left), and a 3 mm diameter cannula (middle) was implanted after

cortical resection for optical access to DS in head-fixed mice (right).

(B) Top-down field of view (FOV) and example GCAMP6f fluorescence from two DS regions.

(C) Heatmap of DA responses from multiple ROIs, sorted so that medial regions are at top and lateral regions are at the bottom.

(D) Example correlation matrices of all ROIs during 5 s epochs highlighted in (C), demonstrating the evolution of regional correlation patterns.

(E) Correlation map of pairwise comparisons for GCaMP6f responses in one session. The top plot shows strength of coupling betweenmedial pixels with all other

areas. Middle and bottom plots show the same for central and lateral seed regions.

(F) Quantification of mean pairwise correlations as a function of distance, separated by mediolateral (ML) and anterior-posterior distances in the dLight and

GCaMP6f signals. n = 8 GCaMP6f mice, n = 6 dLight mice. Error bars are mean ± SEM.

(G) Correlation matrix of one session sorted using hierarchical clustering to assess the regional similarity of DA input.

(H) Top: anatomical projection of regions that belong in the same cluster at highest dendrogram threshold, outlining medial and lateral subregions of the DS.

Bottom: increasing the cluster threshold to 20 revealed smaller, but anatomically contiguous regions of the striatum.

(I) Boundaries of the first two clusters identified in GCaMP6f sessions (n = 58 sessions, 8mice). Orange and blue circles indicate the centroid of identified clusters.

(J) Same as in (I) for dLight imaging (n = 18 sessions, 6 mice).

ll
Article
did not display fast, spatially heterogeneous fluctuations (Fig-

ures 2I and S3G–S3J). Second, we confirmed similar flow-like,

sequential DA signals in absence of cortical resection in a sepa-

rate group of animals that received small-diameter optic fibers

arranged into a grid (Figures S3K–S3S, Video S2) to minimize

cortical damage. These findings lead us to conclude that

wave-like activation patterns reflect a striatal DA circuit special-

ization for spatiotemporally coordinated dynamics.

Motif waves implement systematic DA phase shifts
across DS
The propagation of wave-like dynamics could produce temporal

delays in the arrival of DA transients across the striatum that, in

turn, may regulate regional DA-dependent plasticity mecha-

nisms (Iino et al., 2020; Shindou et al., 2019; Yagishita et al.,

2014). We asked whether elementary propagation trajectories

could realize assorted temporal lead/lags in DA activation across

DS. Using multiple convergent methods for the analysis of

spatiotemporal sequences (Mackevicius et al., 2019; Townsend

and Gong, 2018), we identified rudimentary motif patterns that

affect DA dynamics across the DS (Figures S2F–S2H; Video

S3). We focused our analyses on three motif waves that pro-

duced 93% ± 3% of the DA transients (Figure S2H). First, cen-

ter-out (CO) waves initiate at the juncture of DMS and DLS and

rapidly spread bilaterally outward to produce DA signals that
arrive at different striatal regions with little delay (Figure 2L). Sec-

ond, lateromedial (LM) waves start from the lateral striatum and

predominantly propagate medially to deliver delayed DA tran-

sients to the DMS relative to DLS (Figure 2M). Third, ML waves

are sourced in the DMS and propagate laterally, activating DA

axons in the medial striatum first and progressively recruited

DA in lateral regions (Figure 2N). These findings demonstrate

that motif waves specify how DA responses initiate and propa-

gate across DS, codifying the relative timing of regional DA

that may shape striatal plasticity.

Rewards evoke directional DA waves
What is the functional role of DAwaves in adaptive behavior?We

set out to determine the computational significance of DA trajec-

tories in the context of the well-studied role of DS in instrumental

behavior. The DS exhibits graded behavioral specialty, with the

DMS implicated in agentic, goal-directed behaviors involving ac-

tion-outcome learning and DLS implicated in stimulus-response

behaviors (Yin and Knowlton, 2006; Balleine et al., 2007; Corbit

and Janak, 2010; Thorn et al., 2010). Inactivation or manipulation

of DA in DMS degrades goal-directed planning and action due to

an inability to learn whether rewards are under instrumental con-

trol (Balleine and O’Doherty, 2010; Wunderlich et al., 2012).

To study whether DS DA is tailored to the target region’s

computational specialty, we designed two operant tasks that
Cell 184, 2733–2749, May 13, 2021 2735



Figure 2. Wave-like sequences of DA responses switch between motifs

(A) Spatiotemporal activation of DA axons in an example GCaMP6f session (see Video S1). Frames acquired 50 ms apart show activity initiated in lateral DS that

progressively invades most of the FOV, before terminating in medial regions.

(B) Vector field (gray arrows) from optic-flow analysis of frames in (A). The color map depicts normalized divergence of the vector field at each pixel, visualizing

source regions (red) and sink regions (blue).

(C) Streamlines of the detected DA flow across DS in (A) and (B) drawn from seed pixels indicated by white circles.

(D) Distribution of wave frequency in GCaMP6f sessions (green) and dLight sessions (purple).

(E) Median inter-wave interval of each session for dLight (n = 24 sessions, 6 mice) and GCaMP6f (n = 40 sessions, 8 mice) sessions (p = 0.23; one-way ANOVA).

(F) Distribution of DA wave propagation velocities; data same as in (D) and (E).

(G) Median wave velocity for dLight and GCaMP6f sessions; same data as in (E) (p = 0.19; one-way ANOVA).

(H) Wave direction distributions in representative sessions under multi-color imaging conditions. The panels summarize DA trajectories in mice expressing

GCaMP6f/tdTomato (left), dLight/tdTomato (middle), and dLight/jRGECO1a (right).

(I) Overlayed, linearized distributions of wave directions from each mouse. The p values are for the Omnibus test for whether angles are uniformly distributed.

(J) Comparison of dLight and jRGECO1a median inter-wave interval, n = 4 mice (p = 0.4; one-way repeated measures ANOVA [rmANOVA]).

(K) Comparison of dLight and jRGECO1a wave velocity, n = 4 mice (p = 0.25; one-way rmANOVA).

(L) Center-out waves are centrally sourced (left panel), have bidirectional propagation directionality (middle panel), and produce a synchronized increase in DA

across the ML axis of DS (right panel).

(M) Lateromedial waves, same format as in (L).

(N) ML waves, same format as in (M). Error bars and shading in (D) and (F) indicate SEM.
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manipulated action-outcome contingency and askedwhether DA

dynamics carry information about instrumental controllability (i.e.,

agency). Auditory tones that escalated in frequency indicated

progress to rewards in both tasks (Figures 3A–3D). In the ‘‘instru-
2736 Cell 184, 2733–2749, May 13, 2021
mental’’ task, this reward progresswas contingent on, and tied to,

the mouse running on a wheel to traverse a linearized distance.

The distance to rewardwas randomly selected fromauniformdis-

tribution on each trial (50–150 cm; Figure 3C). Thus, while the



Figure 3. Reward promotes directional waves depending on instrumental requirement

(A) Schematic of the test chamber.

(B) Escalating tone frequencies indicate progress to rewards delivered at end.

(C) Schematic of the two task variants. Wheel running advances tones instrumental task and the specific distance is randomly drawn from a distribution (left

panels), whereas mere passage of time advanced tones in the Pavlovian condition (right panels).

(D) Example trials in the instrumental task showing that faster wheel running advanced tones rapidly, whereas a transient pause in running halts tone frequency

change.

(E) Example licking behavior in one Pavlovian session sorted by delay to reward. Mice increase anticipatory licking as they get closer to reward, in short, medium,

and long trials (shades of color).

(F) Mean anticipatory licking during trial progress in instrumental (top) and Pavlovian sessions (bottom), broken down by trial length (p < 0.001 for effect of tone, p =

0.9 for effect of distance in instrumental sessions; p = 0.001 effect of tone, p = 0.4 effect of tone in Pavlovian; two-way ANOVA).

(G) Reward-aligned DA wave trajectories in an example GCaMP6f instrumental session (n = 92 trials). Color hue indicates wave direction (top left inset), and

saturation indicates flow magnitude. Quiver plots of a subset of trials (top right panel) and the angular plot (bottom right panel) show the session’s wave direction

distribution quantified in a 1 s window after reward.

(H) Reward wave for a Pavlovian session (n = 77 trials); same format as in (G).

(I) Linearized wave angle at reward in instrumental (n = 6 mice, 139 ± 18 trials per mouse) and Pavlovian (n = 8 mice, 108 ± 12 trials SEM per mouse) sessions.

(J) Quantification of relative wave directions in the two tasks, n = 6 instrumental and 8 Pavlovian (p = 1.1 3 10�4; one-way ANOVA).

(K) Peak normalized reward fluorescence across DS in instrumental condition. Right panel showsmean latency-to-peak DA at reward in DMS and DLS (p = 0.031;

Wilcoxon test).

(L) Same as in (K) for Pavlovian task (p = 0.007; Wilcoxon test).

(M) DA flow trajectories at unpredicted reward early (top) and late (bottom) in training. Each line represents flow trajectory in a trial from a seed location (white

circles, n = 70 trials).

(N) Variability of trial-by-trial DA trajectories declines across 4 days of reward exposure (p = 0.018, effect of day; one-way rmANOVA, n = 6 mice). Error bars in (F)

and (I) represent SEM.
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mouse was in control of tone transitions, the specific contin-

gencies varied across trials. In a second ‘‘Pavlovian’’ task, mice

were free to run, but the tone transitions occurred independent

of running, and the time to reward was drawn from a uniform dis-

tribution (4–8 s; Figure 3C). Thus, the two tasks differed in instru-

mental controllability, but were structurally identical: tones pro-

vided information about progress to reward, which could not be

inferred from elapsed time alone. Trainedmice exhibited anticipa-

tory lick trajectories that increasedwith ascending tone frequency

in both tasks (Figures 3E and 3F), indicating that mice used esca-

lating tones to update their online judgment of progress to reward.

Moreover, analysis of run bouts across the two tasks revealed that

mice investedgoal-directed effort to receive rewards selectively in

the instrumental task (Figure S4).

As in the spontaneous conditions reported above, DA waves

were ubiquitous during task performance and were especially
prevalent at reward. Notably, reward delivery immediately re-

synchronized DA responses into propagating waves that had

opponent directions depending on task conditions. Specifically,

rewards after an instrumental trial triggered medially sourced,

laterally propagating (ML) waves (Figures 3G–3J; Video S4),

whereas rewards in the Pavlovian task promoted laterally initi-

ated, medially propagating (LM) waves (Figures 3H–3J; Video

S4). These divergent responses in the two task conditions

affected the temporal order of DA recruitment on the ML axis:

DMS achieved peak reward-induced DA significantly sooner

than lateral regions in the instrumental condition (Figure 3K;

p = 0.031, Wilcoxon signed-rank test; n = 6 mice), whereas

DMS had delayed DA peaks in the Pavlovian task (Figure 3L;

p = 0.0078, Wilcoxon signed-rank test; n = 8 mice). Moreover,

these wave trajectories evolved with task experience, with

reward-induced waves exhibiting irregular trajectories in naive
Cell 184, 2733–2749, May 13, 2021 2737
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animals but becoming more consistent and directional across

several training days (Figures 3M and 3N; Video S5).

Wave-like dynamics support graded credit assignment
in RL simulations
The dynamic sculpting of these trajectories by training and task

demands suggested that DA waves may be important for behav-

ioral flexibility. In particular, the continuous propagation of DA

across the striatum in space and timemotivateda revision of stan-

dard ‘‘temporal difference (TD)’’ RL models wherein a single

reward value influences learning about reward-predictive events.

We reasoned that these views could be expanded to include

‘‘spatiotemporal differences’’ in which waves carry additional,

graded information about structural sub-circuits that are most

likely to be responsible for rewards. To formally explore this ac-

count, we simulated the consequence of spatially delayed re-

wards in the tone taskswithinaTDframework. Thesimulationcon-

tained a bank of parallel agents representing striatal subregions

(Frank and Badre, 2012; Figure S5), and tone/state transitions

formulated as sequential semi-Markov states (Daw et al., 2006).

Toexplore theconsequenceofMLpropagatingwaves, the reward

response for the most ‘‘medial’’ agent was delivered immediately

at the end of the trial and progressively delayed for more ‘‘lateral’’

agents. The model also included eligibility traces (Singh and Sut-

ton, 1996; Sutton and Barto, 2018) so that any delays in rewards

could still be attributed to earlier states that were no longer active,

in proportion to their decaying eligibility. This choice was moti-

vated by both computational principles and the documented

impact of such delays in DA signaling on synaptic plasticity in

mouse striatum (Shindou et al., 2019; Yagishita et al., 2014).

As learning progressed across trials, the RPE response in the

most medial agent back-propagated to the earliest predictor of

reward (Montague et al., 1996; Figure S5; Video S7). However,

in more lateral agents, delays in reward response led to progres-

sively reduced credit assignment to the earlier states. Indeed,

these effects translated to produce steeper value functions in

the most medial agents as the agent progressed to reward,

and lateral agents shallower ramps (Figure S5). Given that the

value function reflects the reward value of the agent’s predic-

tions, which can be used to guide action selection, these simu-

lations provide an initial algorithmic demonstration that reward-

induced waves can give rise to asymmetric structural credit

assignment. Moreover, as rewards produced opponent DA

wave dynamics across the two tasks, this mechanism would

preferentially reinforce the medial DS agents for instrumental

tasks. We next test this prediction in mouse behavior before

examining how instrumental controllability may be computed in

these tasks to affect wave dynamics.

DA waves track changing task contingencies and
predict behavioral adaptation
For our behavioral tasks, we posited that opponent DA waves

would facilitate reward-credit dissemination to specialized stria-

tal regions depending on the animal’s instrumental agency in

advancing progress to reward. This hypothesis is inspired by

expert-like organization of DS anatomy (Aoki et al., 2019; Hin-

tiryan et al., 2016; Hunnicutt et al., 2016; Matamales et al.,

2020), activity (Barbera et al., 2016; Kasanetz et al., 2008; Klaus
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et al., 2017; Parker et al., 2018; Piray et al., 2017; Shin et al.,

2020), and graded specialization for action-outcome learning

on the ML axis (Balleine and O’Doherty, 2010; Graybiel, 2008;

Kim and Hikosaka, 2015; Parent and Hazrati, 1995; Thorn

et al., 2010; Yin and Knowlton, 2006). Testing this possibility

required task conditions wherein agency is dynamically manipu-

lated in the same session. We thus trained a separate cohort of

mice in a serial reversal task with changing reward contingencies

across ‘‘instrumental’’ and ‘‘Pavlovian’’ blocks lasting 25–35 tri-

als each (Figure 4A). Mice experienced multiple unsignaled re-

versals in the same session, requiring continuous learning about

agency. We predicted that reward-epoch DA trajectories should

(1) reverse directions after block transitions; and (2) predict the

animal’s future behavioral adjustments, with ML waves signaling

agency and increase future running.

Trained mice completed an average of 6.4 ± 0.3 reversals

across 210 ± 10 trials per session and dynamically adjusted their

performance according to task contingencies. Specifically, mice

completed instrumental blocks with a significantly higher run ve-

locity and ramped down their velocity after they entered

Pavlovian blocks (Figures 4B and 4C). Replicating our previous

findings in a different cohort of mice, we observed robust DA

waves following instrumental and Pavlovian trials at reward de-

livery (Figures 4D), with ML waves in instrumental trials and LM

waves following Pavlovian trials (Figures 4E–4G). The wave re-

versals persisted across multiple block transitions (Figure 4H)

for both axonal activation and DA release but were not observed

in tdTomato frames (Figure 4I). The wave dynamics were not

simply related to differences in motoric output or velocity: oppo-

nent wave directions were observed even when velocities were

matched across tasks (Figure 4J). Moreover, in Pavlovian trials

with elevated running velocity, wave directions were influenced

by the locomotion-sensory congruence, defined as the correla-

tion of wheel displacement and distance to reward in 250 ms

bins. In particular, we found that spurious correlations between

sensory evidence and (non-contingent) advance to reward in

high-velocity Pavlovian trials promoted ML waves (Figure 4K),

indicating that wave directions are shaped by spurious evidence

for instrumental control. These results support our prediction

that DS wave trajectories are sensitive to task demands across

the two conditions.

While these results confirm that wave trajectories dynamically

shift across task contingencies, they do not establish whether

they are involved in future behavioral adjustments. We thus

tested whether DA wave directions at reward predict future-trial

running in a history-dependent manner.We found that past wave

angles were related to next-trial running speed (Figure 4L) and

significantly correlated with run velocity in successive trials (Fig-

ure 4M). Moreover, the effect of past wave directions on next-

trial velocity had a history dependence, with more recent-trial

DA wave directions demonstrating the largest velocity regres-

sion coefficients (Figure 4N), a pattern not observed in tdTomato

frames. These results are reminiscent of the impact of reward

history in canonical RL models and data (Bayer and Glimcher,

2005; Lau and Glimcher, 2005; Sutton and Barto, 2018) and sup-

port our second prediction. Together, our observations support

the conclusion that DA wave trajectories are sensitive to evi-

dence for agency and deliver opponent DA responses that



Figure 4. Within-session reversal of task contingency shifts DA wave directions dynamically

(A) Schematic of the test chamber.

(B) Velocity changes as mice transitioned instrumental to Pavlovian blocks (black) or vice versa (gray).

(C) Quantification of mean velocity in the two blocks (p = 1.93 10�5, effect of trial type; one-way rmANOVA, n = 15 sessions from 6 dLight and 4 GCaMP6f mice).

(D) Reward-aligned DA trajectories (same format as in Figure 3G) across block transitions in a dLight session (n = 122 trials). Right panel shows quiver plot flow

vectors of a subset of trials at block change.

(legend continued on next page)
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predict the animal’s behavioral adjustments according to task

demands, manifested as adaptive running speed.

A MoE RL model for inferring agency and guiding
DA waves
The above-mentioned data support general predictions about

the role of opponent DA trajectories in instrumental learning by

directing reward credit to (and away from) DMS regions special-

ized for agency. However, these findings do not reveal how the

mouse and the DA system infer controllability. In our tasks, the

animal must make the critical inference of whether it controls

reward-predictive tone transitions and which specific contin-

gency (i.e., distance to run to advance tones) applies in the cur-

rent trial. Thus, for mice to learn about agency and dynamically

adjust their behaviors, the trial-by-trial evidence for instrumental

control should determine whether reward-evoked DA will

strengthen action-outcome learning (i.e., favor the DMS). In other

words, online evidence for agency prescribes wave direction

that, in turn, promotes (or suppresses) instrumental performance

in subsequent trials. To formalize this notion, we constructed a

hierarchical multi-agentmixture of experts (MoE)model, building

on earlier models of corticostriatal interactions in learning and

action (Doya et al., 2002; Frank and Badre, 2012; Figures 5A

and S6). We first summarize the model’s components (see

STAR Methods for details) before outlining and testing precise

predictions related to DA dynamics and behavior.

At the highest layer (level 1) is an ‘‘expert,’’ putatively corre-

sponding to DMS, that computes evidence that the agent is in

control of outcomes (i.e., that its actions cause tone transitions

and rewards). To do so, this expert must consider multiple po-

tential action-outcome relationships, given the distribution of

time/distance contingencies experienced in the task (Figure 5A).

As such, the expert has access to multiple sub-experts within its

domain (level 2), each specialized to represent different contin-

gencies (e.g., the distance needed to run is short, medium, or

long trials). The expert can recruit the sub-expert that best pre-

dicts the state transitions in the current trial (i.e., the one with

the smallest RPEs, minimizing the Bellman error). Moreover,

auditory tone transitions that occur earlier or later than predicted

give rise to sub-expert RPEs (sRPEs; level 3). For example, dur-

ing a short distance trial, the ‘‘short-distance’’ sub-expert expe-

riences reduced sRPEs, whereas a ‘‘long-distance’’ sub-expert
(E) Linearized, trial wave angles in 1 s window after reward. Same data as in (D).

(F) Summary of linearized wave direction in Pavlovian trials (n = 58 trials) and ins

(G) Same data as in (F), showing the angular distribution of wave angles.

(H) Wave direction reversals across block transitions in 5-trial bins. Data combine

from 6 dLight and 4 GCaMP6f mice.

(I) Quantification of wave mean reward wave directions for GCaMP6f, dLight, and

one-way rmANOVA).

(J) Reward wave directions separated by run velocity in instrumental and Pavlo

interaction; two-way rmANOVA). Data same as in (H).

(K) Breakdown of wave direction by congruence between running and trial prog

F(5,70) = 4.5, p = 0.001 with significant trial type 3 velocity interaction F(5,70) =

(L) Data from an example reversal session showing effect of past reward wave dire

as in (E).

(M) Correlation between last-trial reward wave angle and velocity for 15 sessions (

(N) History-dependent regression of wave angle on future-trial velocity (r = 0.34,

dLight and GCaMP6f sessions; betas not significant and model R2 = 0.48 for tdT
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experiences large sRPEs at tone transitions that occur earlier

than expected. At the end of a trial, reward credit is delivered

to experts that are most predictive of state transitions, which

will guide future model ‘‘running.’’ Finally, the agent will increase

its speed only when the accumulated evidence is larger for

agentic ‘‘distance’’ experts than non-agentic ‘‘time’’ experts.

This formulation allows an agent to learn and flexibly adapt

behavior based on task contingencies (Figure S6; Doya et al.,

2002; Frank and Badre, 2012) and expands the RL account of

striatal DA such that it is informed by the inferred causal contri-

butions of recipient subregions (Chang et al., 2004; Gershman

et al., 2015; O’Reilly and Frank, 2006; Russell and Zimdars,

2003). Thus, in contrast to previous global scalar DA accounts,

our model provides a formal framework for adaptive DA signals

that are spatiotemporally tailored to striatal subregions. More-

over, this architecture makes multi-level predictions about DA

dynamics during the reward pursuit and outcome epochs (Fig-

ures 5B–5D and S6), potentially tying together the role of DA in

performance and learning. We systematically test three key pre-

dictions from the model below.

DA ramps in DMS signal evidence for agency and predict
subsequent reward dynamics
If DA waves at reward guide spatiotemporal credit assignment,

what determines which subregion should receive the credit?

As noted above, the model contains a DMS-like ‘‘distance

expert’’ that accumulates online evidence for agency in the

form of ramping signals that are proportional to the accuracy

of underlying subregions’ predictions (Figure 5B). Ramping DA

signals during reward pursuit in themidbrain and ventral striatum

has been described as scalar decision variables corresponding

to RPEs (Gershman, 2014; Lloyd and Dayan, 2015; Morita and

Kato, 2014), value functions (Hamid et al., 2016), or progress

within a cognitive map (Guru et al., 2020). Instead, we posit

here that anticipatory DA ramps in a given DS subregion reflect

the accuracy or usefulness of the underlying regions’ predictions

about task contingency, thus providing a tag for how much

reward-credit it should receive at outcome. Thus, our model pre-

dicts that anticipatory epoch DA dynamics also diverge across

striatal subregions and task demands.

We tested this prediction by examining DA activity during

anticipation as mice drew closer to reward. In the instrumental
trumental trials (n = 64 trials).

d across GCaMP6f and dLight sessions. Same format as in (B), n = 15 sessions

tdTomato (p = 0.002, p = 0.016, and p = 0.4, respectively, for effect of trial type;

vian blocks (p = 0.001 effect of velocity bin, p = 0.004 trial type 3 velocity

ress combined across GCaMP6f and dLight sessions (main effect of velocity

3.81, p = 0.004; two-way rmANOVA).

ction on run speed. Trials were separated by 3 wave direction bins; same data

r = 0.2, p = 0.002 in instrumental trials and r = 0.43, p < 10�5 in Pavlovian trials).

p = 0.007 Spearman’s rank correlation of coefficients, model R2 = 0.44, n = 15

omato frames).



Figure 5. A MoE RL model

(A) Schematic of mixture-of-experts (MoE) model. The agent decides to run based on evidence from ‘‘distance’’ or ‘‘time’’ experts (level 1) that rely on subordinate

‘‘sub-experts’’ that specialize in specific contingencies (level 2). Each sub-expert experiences a trial as a series of tone/state transitions (level 3).

(B) Model predictions at level 1: experts accumulate evidence across the two tasks. Accumulation of responsibility in the ‘‘distance’’ expert is used to adjust

model velocities and also direct waves at reward.

(C) Level 2: each sub-expert will accumulate evidence according to their specialty.

(D) Level 3: sensory observations (tone/state changes) induce errors if not aligned with ‘‘sub-expert’’ prediction.

(E) Proposed reflection of MoE signals in striatal DA activity with DMS representing evidence for control (level 1), is enriched with subregions tuned to specific

contingencies (level 2), and sRPEs are signaled by DA axon segments (level 3).
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task, we observed a buildup of activity in the DMS (Figures 6A–

6D), ramping in proportion to the progress to reward (Hamid

et al., 2016; Howe et al., 2013). Strikingly, the opposite profile

was observed in the Pavlovian condition with negative ramps

even asmice drew closer to rewards (Figures 6B–6D). The oppo-

nent DMS ramp slopes were also observed in blockwise reversal

sessions, with dLight and GCaMP6f ramps dynamically

reversing after block change (Figures 6E–6G), but not in tdTo-

mato frames (Figure 6G).

The opposite profile of anticipatory DA signals across the two

task conditions is not explained by extant models of midbrain or

accumbens DA ramps. Instead, we interpret DS DA ramp dy-

namics as reflecting the value of the underlying subregion’s

agentic predictions, providing a marker for this region’s reward

responsibility. In addition, because reward credit should be pro-

portional to the accuracy of these agentic predictions, our inter-

pretation ties together opponent anticipatory dynamics with the

opponent reward waves. We specifically posited that if DA

ramps relay the subregion’s reward-predictive accuracy, they

would impact the subsequent timing of DA increases at reward,
with regions assigned the most credit receiving the earliest DA

bursts at reward. As such, trials with steepest ramp slopes (high-

est responsibility) should receive reward responses soonest

(largest credit; Figure 6H). Consistent with this interpretation,

we observed that DMS ramp slopes were inversely correlated

with the latency-to-peak fluorescence following reward for

both task conditions (Figures 6I–6K). The negative relationship

between DMS ramp slope and latency to reward peak was

also observed in DA dynamics of contingency reversal sessions

(Figures 6J and 6K; p < 10�4 for both GCaMP6f and dLight ses-

sions), but not in simultaneously captured tdTomato frames (Fig-

ure 6K). These findings indicate that anticipatory DA dynamics in

DMS are modulated by instrumental contingency and predict

regional reward responses, demonstrating a relationship be-

tween eligibility and reward credit.

Regional DA ramps tailored to instrumental
contingencies
Thus far, we have focused on the coarsest division of labor

related to the highest level in our model (controllability, level 1),
Cell 184, 2733–2749, May 13, 2021 2741



Figure 6. Anticipatory epoch DA reflects inferred controllability and predicts DA delays at reward

(A) Anticipation- and reward-epoch DA fluorescence separately for DMS and DLS in an instrumental session. Data sorted by distance to run; white dots indicate

trial start.

(B) Same format as in (A) for a Pavlovian session, sorted by time to reward.

(C) Z-scored ramp profile as a fraction of trial complete in DMS from two tasks (n = 6 instrumental sessions and n = 8 for Pavlovian sessions).

(D) Quantification of ramp slopes in GCaMP6f expressing mice (effect of task type p = 10�6; one-way ANOVA).

(E) DA dynamics in the DMS of GCaMP6f signals in one reversal session. Block type is indicated at right; bottom panel shows mean fluorescence across the

trial types.

(F) DMS ramp slopes across block transitions. Same data and format as in Figure 4H.

(G) Quantification of mean ramp slope in reversal sessions (effect of trial type p = 0.004 for GCaMP6f, p = 0.04 for dLight, p = 0.67 for tdTomato; one-way

rmANOVA).

(H) Proposed relationship between ramps and reward peak.

(I) Relationship of ramp slope and peak latency in DMS in one representative instrumental and Pavlovian session each. Note inverse relationships across both.

(J) Trial-by-trial relationship between ramp slope and peak latency in DMS of mice exposed to reversal session. Same data and format as in (F).

(K) Quantification of session correlation between ramp slope and peak latency (p = 0.03 for instrumental-only sessions and p = 0.007 Pavlovian-only sessions;

Wilcoxon test).

(L) Anticipatory ramps in example instrumental (top) and Pavlovian (bottom) sessions broken down by ROIs along the ML axis (inset).

(M) Quantification of ML expression of ramp slopes (effect of ML position p = 2.13 10�4 instrumental-only sessions, p = 1.93 10�5 for Pavlovian-only sessions;

one-way rmANOVA. For reversal sessions, p = 5.4 3 10�4; two-way rmANOVA.

(legend continued on next page)
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but the agent’s ability to infer control depends on underlying sub-

experts that learn distinct action-outcome contingencies (level

2). Such a hierarchical scheme implies that within the DMS,

smaller subregions should differentially express DA ramps for

different distance contingencies. Indeed, we observed that DA

ramp slopes were expressed across the ML axis of the striatum

to different extents (Figures 6L and 6M). We next tested whether

territories of the DS exhibit specialized ramp profiles for different

distance conditions and found that contiguous striatal regions

expressed steepest DA ramps for a preferred set of trials with

related distance requirements (Figures 6N–6P and S7A). We

did not observe this regional contingency preference in simulta-

neously acquired tdTomato frames (Figure 6P). These results are

consistent with previous studies on progressive instrumental

specialization of DS on the ML axis (Matamales et al., 2020;

Thorn et al., 2010) and support our MoE interpretations that

DMS consists of smaller subregions that learn and express pre-

dictions for a variety of potential instrumental contingencies.

Reward-predictive sensory events evoke DA transients
reminiscent of sub-expert RPEs
At the smallest scale (level 3), the ‘‘evidence’’ for each sub-

expert is accrued based on the degree to which they experience

RPEs (sRPEs) at state transitions (Figure 5D). In the model, each

auditory tone is represented as a unique state within a sub-ex-

pert’s semi-Markov process, and sRPEs arise at tone transitions

that occur earlier (or later) than expected. Thus, evidence for a

given sub-expert is signaled by the relative lack of sRPEs

compared with other sub-experts. This account predicts that

tone transitions would give rise to rapid DA deflections reflecting

sRPEs and that these signals would be modulated by trial length

and position of tonewithin a trial. Specifically, themodel predicts

that (1) sRPEs would be larger in shorter trials (because tone

transitions are indicative of future reward arriving earlier than ex-

pected); and (2) within a given task contingency, tones arriving

later in the trial would drive larger deflections than early-trial

tones due to temporal discounting (Figures 7A and S7).

Supporting these predictions, we observed abrupt DA re-

sponses at tone changes in both widefield, one-photon (Fig-

ure 7B), and two-photon (Figure 7D) preparations. Specifically, in-

dividual pixels during widefield DA imaging responded tomultiple

tone changes and consistently accompanied the sensory indica-

tors of progress to reward (Figure 7C). In contrast to these multi-

tone responses in individual pixels of the widefield data (Figures

S7B–S7E), we noted that DA axon segments in the two-photon

condition reliably responded to single tone transitions (Figure 7E),

and different portions of the imaged axon lattice tiled the full

sequence of escalating tones (Figures 7I and S7F). Next, we as-

sessed whether these DA signals exhibited properties of sRPEs

outlined above (i.e., trial length and position of tone in trial and

not just sensory events or elapsed time; Figure 7A). Indeed,
(N) Map of distance contingency specialization in DS subregions in one instrumen

steepest ramp of each pixel.

(O) Example time courses of preferred and non-preferred trial ramps in example

(P) Quantification of the area under the curve of anticipatory dynamics across dis

tdTomato (red) in four example striatal regions (highlighted in N).

Shading and error bars represent SEM.
tone-responsive GCaMP6f and dLight pixels in the widefield

were significantly modulated by trial length, with larger responses

in short-distance conditions (Figures 7F–7H). Moreover, these

transients scale according to the position of the tone transitions

withina trial, a result notobserved in thecontrol frames (Figure7H).

The DA axon responses in the two-photon condition were also

modulated by trial distance contingency and tone position in trial

(Figures 7J and 7K). Together, these observations indicate that

sRPEs are represented in rapid DA responses at state transitions

during anticipatory epoch, consistent with our model predictions.

DISCUSSION

Our observations provide evidence for a spatiotemporal orga-

nizing principle of striatal DA signals and their behavioral rele-

vance. Wave-like DA activation patterns were expressed as

directional motifs that regulated the relative timing of regional

DA changes and served to correlate DA in functionally related

striatal territories. We reasoned that the computational signifi-

cance of these waves in RL might be to assign spatiotemporal

credit to striatal subregions differentially. Indeed, temporal de-

lays on a similar timescale to those induced by DA waves are re-

ported to constrain corticostriatal plasticity in vitro (Yagishita

et al., 2014). Our TD simulations show that such temporal lags

in reinforcement signals can drive spatially asymmetric reward

learning and credit assignment. Thus, as hierarchically recruited

striatal subregions exhibit graded functional specialization

(Hooks et al., 2018; Kasanetz et al., 2008; Klaus et al., 2017; Piray

et al., 2017; Thorn et al., 2010), DA waves may serve to regulate

plasticity in postsynaptic domains with diverse functional

specialization.

We tested this hypothesis according to the documented spe-

cialty of DMS in action-outcome learning and goal-directed be-

haviors. Our tasks manipulated reward controllability, requiring

mice to dynamically learn about agency. Consistent with our hy-

pothesis that DMS DA dynamics would be tailored to task de-

mands, we found that reward delivery triggered DA waves in

opponent directions based on task contingency. ML waves that

produce rapid DMS DA peaks were enriched in instrumental tri-

als, whereas LM waves were prevalent following non-contingent

Pavlovian trials. Notably, these wave directions reversed within a

few trials after task reversal and predicted future-trial behavioral

adjustmentswith history-dependent effects in linewith reinforce-

ment learning. Together, our studies provide evidence for the role

of spatiotemporal propagation of DA in agency learning by codi-

fying the relative timing of a corticostriatal plasticity modulator.

Evidence for a computational model of regionally
tailored DA signals
The MoE model served to formalize our empirical observations,

building on hierarchical neural network models of corticostriatal
tal GCaMP6f session. Color indicates distance requirement associated with the

subregions.

tance contingencies for simultaneously acquired GCaMP6f signals (green) and
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Figure 7. Tone transition DA responses both in the widefield and two-photon preparations

(A) Model predicted dynamics of sRPEs in different trial lengths and tone indexes.

(B) Average DA responses in two pixels from widefield imaging, aligned to each tone change. Arrows indicate DA recruitment by tone change.

(C) Realignment of data in (B) as duration-sorted trials in a reversal session. Top set of trials in heat plots are Pavlovian trials and lower trials are instrumental trials.

(D) Schematic and responses from two-photon DA axon segments in an instrumental session (same format as in B).

(E) Alignment of 2p responses in time or fraction of trial completed. Average traces are broken down by trial distance.

(F) Quantification of widefield response magnitude for various trial contingencies and tone change (n = 2 mice).

(G) Same data as in (F) visualized for three distance bins in GCaMP6f (blue lines) and tdTomato (red lines) frames.

(H) Combined quantification for distance contingency and tone frequency.

(I) Activity of GCAMP6f in DA axon segments that respond to tone transitions during anticipation. Data (n = 106 trials) frommultiple regions are realigned to fraction

trial completed and concatenated. Bottom traces show the time course of each sRPE group modulated by tones.

(J) Transient response-peaks in 2p data are not tuned to distance traveled. Note that the peak response appears at different x positions on the axis.

(K) Data in (J) realigned by tone position or fraction completed and broken down by distance contingency.
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interactions (Collins and Frank, 2013; Frank and Badre, 2012;

O’Reilly and Frank, 2006). The model captures regional reward

credit assignment in functionally specialized cortico-basal

ganglia (BG) loops, inspired by previous anatomical and func-

tional reports (Aoki et al., 2019; Barbera et al., 2016; Haber,

2003; Hintiryan et al., 2016; Hunnicutt et al., 2016; Klaus et al.,

2017; Lee et al., 2020; Mandelbaum et al., 2019; Marquand

et al., 2017; Märtin et al., 2019; Matamales et al., 2020; Parker

et al., 2018; Shin et al., 2020; Stanley et al., 2020; Tanaka

et al., 2004; Thorn et al., 2010). In the MoE, evidence for instru-

mental controllability was accrued in the form of ramps to the

DMS expert. In particular, as a trial progressed, sub-experts

experienced prediction errors (sRPEs) when sensory events

did not align as expected based on their specialization.

Conversely, congruence between actions and predicted out-

comes for a given sub-expert led to progressive ramps signaling

their prediction accuracy and responsibility for impending re-
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wards. In turn, these anticipatory ramps in the model will bias

reward credit to ‘‘distance’’ experts to increase the agent’s

motoric output during the instrumental task but reduced running

in the Pavlovian task.

Consistent with the MoE account, we reported anticipatory

epoch DA ramping dynamics within large DMS regions that

reversed directions between task conditions. Additional special-

ization was observed for distinct contingencies within smaller

striatal subregions in the two tasks, consistent with sub-experts.

We reasoned that these dynamics may serve a dual purpose.

First, they could promote online behavioral vigor flexibility ac-

cording to the inferred task contingencies in the current trial.

Second, these ramps could also signal which subregions were

best predictive of reward outcomes, providing a tag for their re-

sponsibility (akin to an eligibility trace in RL; Singh and Sutton,

1996). Such a tag would allow RPEs to preferentially credit the

appropriate subregion and the eligible MSNs within it. While
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the two functions are not mutually exclusive, our data provide

strong support for the second interpretation: On a trial-by-trial

basis, the degree of ramping in a given subregion was predictive

of the latency to reward peak elicited by the wave. Moreover, the

ramp slope and wave direction were predictive of subsequent-

trial behavioral adjustments in line with the credit assignment im-

plemented in the MoE. These findings accord with views that DA

signals can have different functions during reward pursuit and

outcome that can be gated by local microcircuit elements that

regulate plasticity windows (Berke, 2018; Bradfield et al., 2013;

Franklin and Frank, 2015; Morris et al., 2004; Threlfell

et al., 2012).

Further supporting the MoE organization, we also reported

localized, transient RPEs that signaled changes in sensory

events. These local transients exhibited key properties consis-

tent with sRPEs according to our TD RL simulations: they were

increasingly larger as trials progressed, and when task contin-

gencies required shorter rather than longer distance running.

We interpret these sRPEs as amechanism by which sub-experts

can report when they fail to predict the current task state. By

comparing these errors across multiple actors, the system can

accrue evidence for the most accurate expert (in the form of

ramps). Notably, this interpretation hints at a different role for

sRPEs (facilitating inference about responsible actors)

compared with the large RPEs following reward itself (facilitating

reinforcement learning): a dual operation that can also be gated

(Franklin and Frank, 2015; Gershman et al., 2015; Redish et al.,

2007; Schoenbaum et al., 2013). Put together, the synthesis of

our data and computational simulations imply that DA signals

are spatiotemporally vectorized during both epochs, tailored to

the underlying region’s computational specialty.

Mechanisms that may support spatiotemporal
coordination of striatal DA
Circuit mechanisms that facilitate the spatiotemporal coordina-

tion of striatal DA activity remain critical gaps in our understand-

ing DA signaling. One hypothesis motivated by the excitation-

release coupling principle in neurobiology would suggest that

DA waves may be inherited from the sequential firing of topo-

graphically projectingmidbrain DA cells (Lerner et al., 2015). Pre-

vious reports of spiking in DA cell pairs report highly synchro-

nized responses that inspired prevailing views for global DA

release in recipient regions (Eshel et al., 2016; Glimcher, 2011;

Kim et al., 2020; Schultz, 1998). Indeed, we did observe such

synchronized DA events across DS, so our findings do not

directly refute these hypotheses, but expand our understanding

of DA signaling to additional, spatiotemporally complex activa-

tion trajectories with functional consequences. Nonetheless,

population-level synchrony in midbrain DA cells and their rela-

tionship to DA waves remain open questions as limited studies

have assessed the simultaneous firing of large populations

(many hundreds/thousands) of projection-defined DA neurons

(Engelhard et al., 2019; da Silva et al., 2018). Moreover, the

extent to which midbrain-initiated action potentials can fully

propagate through an entire DA axon arbor in the face of ener-

getic costs (Pissadaki and Bolam, 2013) and GABA shunt cur-

rents (Brodnik et al., 2019; Kramer et al., 2020; Lopes et al.,

2019) remains unknown. Future studies into details of the func-
tional anatomy and spike propagation principles in DA cells

may uncover previously unappreciated axonal specializations

or patterns of sequential recruitment in the midbrain cell bodies.

Another likely mechanism for DA waves may involve local

modulation of DA axons and release in the striatum. Notably,

striatal DA release can be evoked by cholinergic interneurons

(Cachope et al., 2012; Liu et al., 2018; Threlfell et al., 2012) that

can relay cortical or thalamic glutaminergic drive (Adrover

et al., 2020; Kosillo et al., 2016; Mandelbaum et al., 2019).

Wave-like, spatiotemporal activation patterns have been re-

ported in the neocortex (Kasanetz et al., 2008; Mohajerani

et al., 2013) and striatal cholinergic interneurons (Rehani et al.,

2019). Thus, local striatal microcircuitry (including GABAergic in-

teractions; Holly et al., 2020; Kramer et al., 2020) may regulate

regional DA dynamics. Moreover, DA waves at reward outcome

may also be a consequence of the interaction between primed

excitability of DA axons during the anticipatory epoch and

midbrain-sourced synchronous reward bursts. Combining these

spatiotemporal profiles may produce sequential DA activation at

reward that propagates across the striatum in proportion to the

ramps during anticipation. Therefore, how the spatiotemporal

dynamics of glutamatergic and cholinergic activity interact with

DA axons (Adrover et al., 2020) to regulate regional DA during

various behavioral epochs are intriguing lines of inquiry for future

investigations.

Limitations of study
Although DMSDA in our report supports the computations of the

‘‘distance’’ expert in the MoE, a limitation of our study is that we

did not identify or assess the DA dynamics with properties of the

‘‘time’’ expert in the DS. Many studies investigating RPEs involve

classical conditioning in which temporal representations are

evident in the midbrain (Pan et al., 2005; Hollerman and Schultz,

1998; Soares et al., 2016), and ramping signals related to timing

may be present in other regions upstream of the DA system

(Brown et al., 1999; Hazy et al., 2010; Mello et al., 2015). None-

theless, even without a time expert per se, our MoE would

behave similarly with a single DMS expert that simply evaluates

the evidence for agency relative to some prior expectation about

control. Moreover, while wemake the case for how spatiotempo-

rally coordinated DA responses may be involved in reward

learning, an additional limitation of our study is that we did not

deduce the mechanistic origin of DA waves. We have discussed

multiple candidate mechanisms above.
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Bruhn, A., Weickert, J., and Schnörr, C. (2002). Combining the Advantages of

Local and Global Optic FlowMethods. In Pattern Recognition, L. Van Gool, ed.

(Springer), pp. 454–462.

Cachope, R., Mateo, Y., Mathur, B.N., Irving, J., Wang, H.-L., Morales, M., Lo-

vinger, D.M., and Cheer, J.F. (2012). Selective activation of cholinergic inter-

neurons enhances accumbal phasic dopamine release: setting the tone for

reward processing. Cell Rep. 2, 33–41.

Chang, Y.-H., Ho, T., and Kaelbling, L.P. (2004). All learning is Local: Multi-

agent Learning in Global Reward Games. In Advances in Neural Information

Processing Systems 16, S. Thrun, L.K. Saul, and B. Schölkopf, eds. (MIT

Press), pp. 807–814.

Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A.,

Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasen-

sitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300.

Collins, A.G.E., and Frank, M.J. (2013). Cognitive control over learning:

creating, clustering, and generalizing task-set structure. Psychol. Rev. 120,

190–229.

Collins, A.G.E., and Frank, M.J. (2014). Opponent actor learning (OpAL):

modeling interactive effects of striatal dopamine on reinforcement learning

and choice incentive. Psychol. Rev. 121, 337–366.

Corbit, L.H., and Janak, P.H. (2010). Posterior dorsomedial striatum is critical

for both selective instrumental and Pavlovian reward learning. Eur. J. Neurosci.

31, 1312–1321.

da Silva, J.A., Tecuapetla, F., Paixão, V., and Costa, R.M. (2018). Dopamine

neuron activity before action initiation gates and invigorates future move-

ments. Nature 554, 244–248.

Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C.K., Hassabis, D.,

Munos, R., and Botvinick, M. (2020). A distributional code for value in dopa-

mine-based reinforcement learning. Nature 577, 671–675.

Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P.,

Tsegaye, G., Holt, G.T., Hu, A., Walpita, D., et al. (2016). Sensitive red protein

calcium indicators for imaging neural activity. eLife 5, e12727.

Daw, N.D., Courville, A.C., and Touretzky, D.S. (2006). Representation and

timing in theories of the dopamine system. Neural Comput. 18, 1637–1677.

Doya, K., Samejima, K., Katagiri, K., and Kawato, M. (2002). Multiple model-

based reinforcement learning. Neural Comput. 14, 1347–1369.

Eiter, T., and Mannila, H. (1994). Computing discrete Fréchet distance
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RESOURCE AVAILABILITY

Lead contact
Requests for further information or reagents should be directed to and will be fulfilled by the lead contact, Arif A. Hamid (arifhamid.

DA@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data and code is available from corresponding author(s) upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
We used 29 adult DAT-cre mice (Slc6a3tm1(cre)Xz;13 females, 16males; 020080, Jackson Laboratories, RRID:IMSR_JAX:020080) that

were group or single housed on a reversed 12hr cycle and all behavioral training and testing was performed during the dark phase. All

mice were task naive before training according to procedures described below. All procedures were conducted in accordance with

the guidelines of the NIH and approved by Brown University Institutional Animal Care and Use Committee.

METHOD DETAILS

Surgery
To achieve selective expression of cre-dependent GCaMP6f (or jRGECO1a) in DA cells, we followed standard surgical procedures

for stereotaxic injection of cre-dependent virus. Briefly, mice were anesthetized with isoflurane (2% induction and maintained at

0.75%–1.25% in 1 l/min oxygen). To attain widespread infection of DA cells throughout the midbrain, we drilled two burr holes above

themidbrain (�3.2mmAP, 0.4mm and 1.0mmML relative to bregma) and injected 0.1-0.2 mL of AAV-syn-Flex-GCaMP6f (Chen et al.,

2013) (Addgene Cat#100833) or AAV-syn-Flex-jRGECO1a (Dana et al., 2016) (Addgene Cat#100853) at two depths per burr hole

(3.8 and 4.2 mm relative to brain surface). A subset of mice also received inert fluorophores used as control frames injected into

the midbrain using the same specifications (AAV-syn-Flex- tdTomato Addgene Cat#62723, or AAV-syn-DIO-EGFP Addgene

Cat#50457). For intrastriatal injections of dLight1.2 sensor, we drilled three burr holes (0.5ML, 1.0 AP; 1.4ML, �1.0AP; and 2.3ML,

0AP) and injected 0.1-0.2 mL of AAV-hsyn-dLight1.2 (Patriarchi et al., 2018) (Addgene Cat#111068) per burr hole.

We next secured a metal head-post to the skull and implanted an imaging cannula over the ipsilateral dorsal striatum. The

cannula is a custom fabricated stainless-steel cylinder (Microgroup; 3mm diameter and 2.5-3mm height) with a 3mm coverslip

(CS-3R, Warner Instruments) glued at the bottom with optical adhesive (Norad Optical #71). To insert the cannula into the brain, a
e1 Cell 184, 2733–2749.e1–e5, May 13, 2021
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3mm diameter craniotomy was first drilled over the striatum (at bregma, centered on 2.0mmML), and then dura was gently removed

followed by slow aspiration of the overlying cortex until white, colossal fibers were visible (~0.8-1.2mm from brain surface). These

fibers were also gently aspirated layer by layer until the underlying dorsal striatal tissue was uniformly exposed. A sterile imaging can-

nula was progressively lowered until the coverslip contacted striatal tissue uniformly. Dental cement was applied to secure the

implant to the skull, and mice were allowed to recover for 1-2 weeks with post-operative care.

For optic fiber grid experiments (Figure S3K), the implants were constructed in-house using 3mm long 0.2NA, 100um multi-mode

optical fibers, after removal of coating and cladding (AFM100H, ThorLabs). Nine to sixteen fibers were arranged into a grid spanning

the 3mmdiameter area of the imaging cannula described above. This arrangement facilitated regularly-spaced sampling of the same

striatal regions captured using the cannula. During surgical implantation, the fibers were slowly lowered into the brain (at a rate of

0.1 mm/min) without aspiration of the cortex and cemented at 1.3mm from the brain surface, terminating in the dorsal striatal sub-

region. DAT-cremice received flex.GCaMP6f injection as described above during the same surgery andwere also allowed to recover

from surgery for 1-2 weeks before imaging commenced. Two additional mice received a drivable optic-fiber grid that was con-

structed in the same fashion (but with 5mm long fibers; Figure S3R). During surgery, the fiber grid was inserted only 1mm ventral

to the brain surface. Several days later, after imaging started, this fiber bundle was progressively lowered 50-100um/day to assess

DA axon dynamics deep in the striatum.

Behavioral Training
Following full recovery from surgery, mice underwent 2-3 days of habituation in operant chambers outfitted with a 3D printed wheel

(15 cm diameter), audio speakers, and a solenoid-gated liquid reward dispenser. After 1-3 days of acclimation, mice were water-

restricted, receiving 1mL/day in addition to water earned during task performance. We used custom LabVIEW scripts to control op-

erant boxes during training and testing in behavioral tasks. In the first stage of training, mice received non-contingent rewards deliv-

ered randomly (3-15 s apart, uniform distribution) for five consecutive days or until they reliably licked for the reward. DA dynamics

during these epochs are reported in Figures 3M and 3N and Video S4. Next, training in the ‘‘Pavlovian’’ task began, wherein rewards

were delivered after a variable delay from trial-start. The start of each trial is signaled by the onset of a 4.3kHz tone that continues to

escalate in frequency in proportion to the fraction of trial completed (Figure 3B).We used nine different frequencies that were selected

tominimize harmonic overlap; 4.3kHz, 6.2kHz, 8.3kHz, 10kHz, 12.4kHz, 14.1kHz, 16kHz,8.4kHz, 20kHz. Across trials, the duration to

wait for reward is randomly drawn from a uniform distribution (4-8 s). At the end of a trial, the auditory sound is turned off, and the

solenoid delivers 3 mL of water reward to a spout in front of themouse. Licking behavior was detected using capacitive touch sensors

(AT42QT1010, Sparkfun). In some catch trials, the initial 4.3kHz tone turned off after 0.5 s, and the mouse did not have continuous

information of progress to reward. For clarity, we only focused on escalating-tone trials. The next trial started after a variable inter-

trial-interval of 3-8 s. A few weeks later, the same animals were then further trained on a distance-variant of the same task, where

reward delivery is contingent on mice running on the wheel (‘‘instrumental’’ task). Mice were exposed to the instrumental task

requiring them to run on the wheel to traverse linearized distances, which are also randomly selected from a uniform distribution

(50-150cm). Progress to reward was indicated by the same tone frequencies, and the angular position of the wheel was recorded

using a miniature rotary encoder (MA3A10250N, US Digital). For task-related DA signals reported in Figures 3, 4, 5, 6, and 7, we

imaged expert mice after 2-3 weeks of instrumental or Pavlovian task experience in a chamber equipped with a widefield and 2-

photon imaging system.

A different cohort of mice was exposed to the within-session reversal of instrumental and Pavlovian task conditions (data pre-

sented in Figures 4 and 6). As in the previous group, naive mice were first acclimated to the chamber and received unpredicted re-

wards as described above before exposure to the reversal task. The training and testing chambers of reversal tasks were identical to

the chamber described above, except for the presence of a 5.9 inch, 1080p monitor projecting a virtual corridor controlled via the

same LABVIEW behavioral software (Figure 4A). The animals were, thus, provided with richer sensory feedback about trial progress

that could be leveraged to infer agency: In addition to the tone transitions, an LCD screen projected the virtual corridor that advanced

in proportion to percent-trial-completed in both trial-types (see Video S6). The virtual corridor contains visual landmarks that include

striped walls and a back wall with circles indicating the reward location. The Pavlovian and instrumental trials in these sessions were

administered identical (i.e., trial statistics and contingencies) to those described above in instrumental-only or Pavlovian-only ses-

sions. Blocks of instrumental and Pavlovian trials switched every 25-35 trials. All behavioral data is digitized and stored to disc

at 50Hz.

Widefield and two-photon imaging
Imaging was performed using a multi-photon microscope with modular laser-scanning and light-microscopy designed by Bruker/

Prairie Technologies. Two-photon microscopy was performed using a 20X air objective (Olympus) on the same imaging platform

with a femtosecond pulsed TiSapphire laser source (MaiTai DeepSee, 980nm power measured at objective was 20-50mW) that

was scanned across the sample using a resonant (x axis) and non-resonant (y axis) galvanometer scanning mirrors. Returning pho-

tons were collected through an imaging path onto multi-alkali PMTs (R3896, Hamamatsu), and recorded frames were online-aver-

aged to achieve a sampling rate of 10-15Hz. Some of the widefield imaging experiments were performed using a full-spectrum LED

illumination with FITC filter cassette for illumination at 470nm and detection centered at 530nm. Images were acquired using a Cool-

Snap ES2 CCD camera (global shutter, Photometrics) and synchronized with behavioral events through TTL triggers. These frames
Cell 184, 2733–2749.e1–e5, May 13, 2021 e2
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were acquired with a 4X objective (Olympus), 100ms exposure (10Hz), and 8X on-camera binning to achieve a sample resolution of

40 mm/pixel (unless indicated otherwise). Dual-color imagingwas performed on a custom-assembled rig (see Figure S3A). Briefly, red

and green fluorophores were respectively excited using 20Hz interleaved pulse-trains of 530nm or 470nm LEDs (MINTF4 and

M470F3, respectively, ThorLabs). The 530nm excitation beam was first filtered (MF565-24, ThorLabs) and directed to a Nikon

50mm f/1.2 objective using a 405/488/560 dichroic (Di01-R405/488/561/635/800-t1-25x36, Semrock), while the 470 excitation

beamwas filtered (FF01-470/22-25, Semrock), and combined using a 490nm long pass dichroic (DMLP490R, ThorLabs). The return-

ing emission light was dual bandpass filtered at 520nm and 610nm (FF01-523/610-25, Semrock). Images were captured using the

Andor Zyla camera with an external trigger and 24ms exposure for a net frame rate of 40Hz. This yielded an effective 20Hz single-

channel acquisition of red- and green-channel frames, which were synchronized with behavioral events.

QUANTIFICATION AND STATISTICAL ANALYSIS

All images were processed with custom routines in MATLAB. Each session is preprocessed for image registration and alignment to

behavioral events based on event triggers. Movement artifacts and image drift in the XY plane were corrected using rigid-body regis-

tration using aDFT-basedmethod (Guizar-Sicairos et al., 2008). To cluster the activity of DA axons, we used the K-means algorithm in

MATLAB. To compute the robustness of clustering results, we used the adjusted rand-Index measure, which computes the similarity

of two clusters based on the probability of member overlap (corrected for chance; 0 = random clusters, 1 = exact samemembership).

We characterized flow patterns in DA waves by adapting standard optical flow algorithms in machine vision that are validated for

imaging of fluorescence signals (Afrashteh et al., 2017; Mohajerani et al., 2013; Townsend and Gong, 2018). Briefly, flow trajectories

were computed for any two successive frames as a displacement of intensity across the pixels in time. This method allowed us to

evaluate a pixel-by-pixel velocity vector field that summarizes the direction and strength of flow at each pixel. While there aremultiple

methods to achieve this calculation, we adapted a combined Global-Local (CGL) algorithm (Bruhn et al., 2002; Liu, 2009) that com-

bines the Lucas-Kanade and Horn-Schunck methods. The frame-by-frame vector fields calculated using the CGL method were

further processed to extract sink and source locations and also flow trajectories across multiple frames (Figure 2B). Specifically,

the frame-by-frame flow magnitude for each frame (or flow-velocity, with units of mm/second) is computed by averaging the length

of vectors at each pixel. The locations of sinks or sources were estimated based on local vector orientations: i.e., sinks are points of

inward flow, whereas sources are points of outward flow. We estimated the pixel-wise likelihood of sinks and sources by simply

computing the divergence of the vector field in each frame (‘‘divergence’’ function in MATLAB). The flow trajectory across frames

was calculated from vector fields using the ‘‘stream3’’ function in MATLAB from seeded pixels (e.g., Figures 2C and 3M). To quantify

how reward-wave trajectories changed with task exposure (Figures 3M and 3N), we evaluated the flow trajectory for each trial, initi-

ated frommanually defined source pixels (white dots in Figure 3M), and computed the average Fréchet trajectory similarity measure

(Eiter and Mannila, 1994) across sessions.

To determine if elementary propagation sequences structure DA dynamics, we used two complementary methods, as shown in

Figures S2F and S2G. In the first method, the frame-time-series was processed for extraction of spatial principal components using

standard methods (e.g., (Mukamel et al., 2009)), and the resulting spatial PCs were embedded into a two-dimensional tSNE projec-

tion using the MATLAB ‘‘tSNE’’ function. The various DAwave trajectories of interest were observed to consistently traverse portions

of the low-dimensional manifold (Video S4). To find the different DA waves, we clustered the low dimensional paths/trajectories (Fig-

ure S2F, far right) that were correlated with the motif waves described in Figures 2L–2N. The second method for identifying motif

waves followed procedures described in Mackevicius et al., 2019 (Mackevicius et al., 2019; Peter et al., 2017) (seqNMF toolbox

in MATLAB) for unsupervised discovery of temporal sequences using convolutional non-negative matrix factorization. Briefly, frame

time-series were reshaped into pixel time-series and factored into a tensor of smaller N matrices, with specified L duration across all

pixels P (P x L x N). The seqNMF methods reduced motif matrix (P x L) redundancy by including a spatiotemporal penalty. We used

various parameter combinations and selected ƛ = 0.005, N = 6, L = 0.6 s as initial parameters to identify motif waves for GCaMP6f,

dLight and jRGECO1a frames.

DA waves at reward were quantified in a one-second epoch after reward delivery unless explicitly stated. While most figures show

the angular orientation of wave directions relative to the imaging field of view (i.e., keeping AP/ML consistent, e.g., Figures 2H, 3G, 3H,

and 4G), we also utilized a linearization of wave directions to specifically quantify the extent of medial or lateral directionality of DA

reward waves. To achieve this, the frame vector angle is remeasured relative to the medially oriented vector (u = �1, v = 0) without

regard to clockwise/counterclockwise directionality (e.g., Figures 3I inset and 4E insets). This yielded relative wave-angles that were

small if oriented in themedial direction (i.e., LMwaves) and larger relative-angles for laterally oriented wave direction (i.e., MLwaves),

as shown in Figure 4E.

We quantified the online sensory evidence for reward controllability the animal gets as a ‘congruence’ measure, quantifying the

relationship between locomotion and changes in the audiovisual experience of the mice. We computed congruence as the fraction

of a trial with > 0.75 correlation coefficient between locomotion (wheel position) and fraction of trial completed, in nonoverlapping

250ms time intervals. This allowed us to identify trials that may produce an ‘‘illusion of control’’ in the Pavlovian condition with

high velocities when congruence is high, despite the absence of instrumental contingency in the trial.

We performed a multiple linear regression to assess how strongly previous-trial wave directions relate to current-trial running

(Figure 4N). We first z-scored session-wide past wave-angle and velocity regressors and performed multiple regression to predict
e3 Cell 184, 2733–2749.e1–e5, May 13, 2021
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current trial velocity. For fluorescence time series alignments, DMS and DLS masks were defined using one of three methods: i)

manual drawing, ii) boundaries using cluster results (as in Figure 1I), or iii) uniformly spaced ROIs on the mediolateral axis (as in Fig-

ure 6L inset). We evaluated the correlation between ramp slope and latency-to-peak by first peak-normalizing the reward response in

a 2 s window and finding the time point (after reward) for which the fluorescence signal reached peak levels. TIFF stacks of 2-photon

images of DA axon segments were also pre-processed for registration and alignment with behavioral data. To draw ROIs of these

segments for assessing organization of responses (Figure S1), we followed Howe and Dombeck (Howe and Dombeck, 2016).

Computational model
We modeled mouse behavior using a mixture of experts / multi-agent RL architecture (Frank and Badre, 2012), extended here to

accommodate the sequential tone structure with semi-markov dynamics (Daw et al., 2006). We modeled the two task structures

as separate ‘‘experts’’ that learned a value function V as a function of either elapsed time as in classical temporal difference learning

applied to the Pavlovian condition, or as a function of distance traveled. Because mice were trained on both time and distance tasks,

multiple sub-experts (representing clusters in mediolateral coordinates of striatum) were pre-trained for 2000 trials to span a range of

contingencies (e.g., 400ms, 600ms, or 800ms per tone transition; or 5, 10 or 15cm). For simplicity, we modeled the task with discrete

sub-experts that specialized on (had been preferentially exposed to) particular times/distances. However, one can easily generalize

the framework to the continuous case (e.g., using basis functions (Ludvig et al., 2008)) and the discrete space can be modeled with

arbitrary resolution by simply increasing the number of sub-experts. Moreover, variousmodels have shown that prediction errors can

be used to segregate learning of different latent task states (Collins and Frank, 2013; Gershman et al., 2015).

Sub-expert and expert learning

The value function for each time sub-expert s estimates the discounted future reward Vs(Xi,t) = r(t) + gVs(Xi,t +1) and was trained via

temporal differences (Sutton and Barto, 2018) based on reward prediction errors d(Xi,t) = r(t) + gV(Xi,t +1) - V(Xi,t). Each auditory tone

was modeled as a distinct state Xi,t or Xi,d with semi-markov dynamics. That is, the onset of each tone iwould advance the state vec-

tor to the corresponding position even if the tone occurred earlier or later in absolute time/distance. Thus the value function learned

for each sub-expert was tied to the current state (tone) and the (discretized) dwell time (t) or distance (d) since it has been entered, and

not to the absolute time or distance that passed from the onset of the first state. This semi-markov process was based on the

assumption that the tone stimuli induce a neural state representation upon which TD is computed (Daw et al., 2006; Ludvig et al.,

2008) and evidence that rodents are endowed with such a rich state representation (Gardner et al., 2018). The value function was

learned by adjusting weights in response to the X state vector, with V(Xi,t) = wt Xi,t and wt ) wt + a d(t), where a is a learning

rate. The distance experts were trained analogously, but with the X vector advancing with each (discretized) distance step rather

than passive time. Thus if the agent stopped moving, the Xi,d vector remained constant until it moved again, and if it moved faster

than usual, the Xi,d vector would advance to later states accordingly. We fixed a = 0.25 and g = 0.95 for all experts but verified

that the patterns were robust to other settings.

Performance and inference

After learning, the on-line evidence (responsibilities, Figures 5 and S6, modeling the ramps) for each sub-expert was computed as an

approximation to the likelihood of the trial-wise tone transitions for that sub-expert. We adopted a hybrid Bayesian-RL formulation

(Frank and Badre, 2012). From a Bayesian perspective, the attentional weights for each expert can be evaluated by computing the

posterior probability that each expert encompasses the best account of the observed data x: P(s|x) = P(x|s) P(s) / SP(x|si) P(si). Thus

the evidence for each expert is computed by considering its prior evidence P(s) and the likelihood that the observed tone transitions

or rewards would have been observed under the expert’s model P(x|s), relative to all other experts. For example, if there was a low

probability for a tone transition at a particular moment under a given expert, then the likelihood of that observation given the expert’s

model is low. Once the posterior evidence for each expert is computed, one can then apply Bayesian model averaging to allocate

attentional weights to each expert in proportion to their log evidence.

Rather than a fully Bayesian realization, we instead implemented an RL approximation that maymore directly relate to corticostria-

tal DAmechanisms (Frank andBadre, 2012). Instead of computing the likelihood directly, expert responsibility weights were assigned

such that experts with the smallest Bellman errors ds accumulated the most weight. In particular, the responsibility weight for each

sub-expert u‘s was decremented when the corresponding sub-expert experienced a reward prediction error: u‘s ) u‘s � ds, where

ds is the positive reward prediction error according to the corresponding sub-expert’s value function given state vector X. (Similar

results hold if using |ds| instead of only positive RPEs to decrement expert weights). Intuitively, experts with more prediction errors

are less likely to have been responsible for the outcome (tone transition or reward). These responsibility weights were then normalized

relative to all sub-experts as an approximation to the log evidence for a given sub-expert:usi = expðbu‘siÞ /Sjexpðbu‘sjÞ, where b is an

inverse temperature parameter. Thus, in contrast to standard RL in which RPEs reinforce actions that yield rewards, during inference,

more frequent Bellman errors for a given sub-expert are indicative that it is less responsible for observations compared to sub-ex-

perts that have minimal error. Such a scheme is compatible with extant models that use reward prediction errors for state creation

and inference separate from reinforcement per se (Collins and Frank, 2013; Frank and Badre, 2012; Gershman et al., 2015; Redish

et al., 2007). We posited that these RPEs correspond to the phasic events observed at tone transitions in the two-photon imaging

data. The accumulation of these responsibility weights were posited to relate to the widefield imaging data in discrete subregions

of DMS.
Cell 184, 2733–2749.e1–e5, May 13, 2021 e4



ll
Article
Finally, a second-level task selection process was implemented to arbitrate responsibility between the overall distance expert and

overall time expert (each of which constituted aweighted combination of their subordinate experts). This inference processwas iden-

tical to that for the sub-experts, with responsibility updated based on their experienced prediction errors: u‘D ) u‘D � dD, where u‘D
is the accumulated responsibility of the distance expert based on its reward prediction errors, dD = r(t) + gVD(t+1) - VD(t). The value

function for the distance and time experts VD and VT are in turn weighted averages according to the inferred responsibilities of the

subordinate experts within each structure: VD(t) =SusDVSD(t) and VT =SusTVST(t). Similarly, the value function of the agent as a whole

is the weighted average value function across the two experts V(t) = uD VD (t)+ uT VT(t). These responsibility weights for each task

structure were again normalized across tasks, uD = ebw‘D / eb w‘D+ ebw‘T.

For each distance or time, 100 test trials were run with 10 tones each and an inter trial interval was randomly drawn from 5-15 s. The

agent as a whole selects actions in terms of speeds to run for a period of time at each tone transition or after it has completed it’s

previous running. Speeds were selected in proportion to the inferred responsibility of the DMS expert, together with some stochas-

ticity: speed(t) = five*ðuD (t)-0.5)) + ε, where ε was drawn from a uniform distribution with a mean of 3. Stochasticity facilitates the

agent’s ability to disambiguate distance from time tasks within a trial (a constant speed would equate the prediction errors for the

two tasks given appropriate sub-experts). Increasing speed with inferred DMS expert responsibility uD allows the model to capture

the increased running with instrumental task structure (Figure S6). More detailed investigation of how speeds may be optimized ac-

cording to reward/effort/delay tradeoffs will be examined in future work.
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Figure S1. Decorrelated activity in micrometer-scale DA dynamics and clustering patterns of DA input to dorsal striatum inmultiple animals,

related to Figure 1

(A) Example frames illustrating that nearby DA axon lattices can be activated asynchronously. Bottom panel shows representative timeseries of fluorescence from

two segments outlined in blue and red. (B) Quantification of correlation between the session-wide timeseries of axons based on anatomical distances in 2-photon

imaging. Note that nearby axon segments are highly correlated, but they exhibit a distance dependent falloff as reported in Figure 1F albeit on a different

anatomical scale. (C) Propagation of wave-like response in DA axon lattices during reward response. Left frames are early time points, and rightmost are later,

uniformly sampled from a 2 s alignment. Note the initial activation of axons in the left (medial) portion of the frame, and progressive recruitment of axons that are in

the right field of view (lateral) before signal intensity decreases.(D) Quantification of fluorescence in rectangular ROIs from data shown in (C) on the mediolateral

axis. (E) Quantification of the cross-correlation of signals frommost medial and lateral regions during spontaneous epochs (black line) and during reward epochs

(0-2sec after rewards, gray line), N = 2 mice, 112 ± 13 trials per mouse. Note the elevated correlations in the left quadrant representing increased probability of

wave-like, temporally delayed activation in lateral regions compared to medial areas at reward. (F) Patterns of clustering in DA responses for 8 GCaMP6f animals

examined. For each mouse, the leftmost panel shows the average fluorescence projection, and the striatal boundaries identified with cluster limits of 2 or 20

(middle), and the accompanying correlation matrix of the session-wide activity as shown in Figure 1. (G) Pattern of clustering for dLight expressing mice. Data

presented in the same format as (F).
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Figure S2. Optic flow analysis and unsupervised identification of DA waves, related to Figure 2

(A) Divergencemap of flow vectors for representative frames illustrating the spatial location of sinks and sources (media, lateral and central DS). (B) Time course of

activity across the mediolateral gradient (left) for an example imaging epoch. Blue boxes enlarged to show dynamics of transient events that were produced by

ML, LM, or CO flowing waves that deliver DA to different parts of the dorsal striatum with various relative lags. (C) Additional DA time courses on the mediolateral

axis, and various waves labeled with colored arrows in a dLight expressing mouse imaged at 40Hz. Each row of the color plot represents pixels ordered in a

mediolateral direction as demonstrated in the right inset. White dotted lines at arrows indicate propagation of activity; vertical lines for near simultaneous

activation in CO, and right or left tilted lines for LM and ML waves as activity proceeds from one region to the next. (D) Demonstration of the relationship between

the most medial and lateral region DA signals under three DA flow patterns that produce zero, positive and negative lags. (E) Quantification of relative abundance

of the three lead/lag relationships in N = 58 sessions for both dLight and GCaMP6f expressing animals. (F) Unsupervised identification of spatiotemporal DA flow

patterns. In the first method, frames across time were used to identify 12 spatial principal components (PCs), which were projected into low dimensional space

using tSNE and the various DA activation patterns formed clustered transitions in this low dimensional space (far right). See Video S3 for animation of these

trajectories. (G) The second method uses the seqNMF algorithm that first converts DA frames into vector pixel-timeseries, and via convolutional non-negative

factorization, identifies spatiotemporal motifs with parameterized temporal durations, and predicts their session-wide temporal weights. (H) Sequence of frames

showing identified motif waves as they spread across the striatum (left, frame period of 25ms), and summary of resulting flow direction and optic-flow vector

fields (right).
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Figure S3. Multiplexed dual-color and optic-fiber grid sampling of DA spatiotemporal trajectories, related to Figure 2

(A) Schematic for dual-color, multiplex widefield imaging of DA dynamics. LEDs (470nm for green capture, and 530nm for red capture) were pulsed at 20Hz

interleaved frequency, and the camera was exposed for 24ms for a total acquisition rate of 40Hz. Bottom shows the timeline of red and green frame capture and

the respective interleaved LED pulses. (B) Map of pixel-wise correlation coefficients showing that simultaneously captured dLight and jRGECO1a signals from

across the imaging field of view are highly correlated in four mice. (C) Distribution of pixel-wise correlations for each mouse. (D) Distribution of cross-correlation

between jRGECO1a and dLight (black bars), and autocorrelation for dLight (green) and jRGECO1a (red). (E) Average correlation between jRGECO1a and dLight

signals specifically within the DMS, DLS and posterior tail of DS. Each dot corresponds to data from a single animal. (Pearson’s correlations for DLS = 0.82 ± 0.03

SEM, DMS = 0.85 ± 0.006 SEM, posterior tail = 0.82 ± 0.05 SEM; N = 4 mice, all p < 0.01) (F) Correlation coefficients of dLight/jRGECO1a signals during different

bins ofmouse velocity. One-way repeated-measures ANOVA,main effect of velocity F(3,12) = 0.22, p = 0.87, N = 4mice. (G) Example time course of green and red

signals under different combinations of DA dependent / inert fluorophore signals. (H) Intensity-Variance relationship between the simultaneously acquired

channels demonstrating that inert channels exhibit small fluorescence variance. Each dot represents a single frame. (I) Spectral profile of session-wide signals

from all pixels in the two channels imaged. (J) Distribution of correlations between fluorescence at each pixel for the two imaged channels. (K) Grid of optic fibers

to quantify striatal DA dynamics without cortical aspiration. Left panel shows a pre-surgical picture of optic fiber grids before implantation. Middle, schematic of

how the optic fibers will penetrate the overlying cortex to terminate within the striatum, highlighted in blue. Right, sample field-of-view of imaged fluorescence

responses at the top of the skull, embedded in black dental cement. (L) Sequence of frames demonstrating heterogeneous GCaMP6f responses in dorsal

striatum. Bottom panels show example time courses of DA axon responses during spontaneous activation in ROIs highlighted with colored circles. Right shows

response at unpredicted reward delivery. (M) Summary of the correlation coefficients for each pairwise comparison between optic fibers (striatal locations),

separately during ‘spontaneous’ and ‘reward’ epochs for four tested mice. (N) Spatial dependence of the pairwise correlations at strital locations sampled by

optic fibers during the spontaneous condition. Data shown in the same format as Figure 1F, averaged across all animals and separated into mediolateral and

lateromedial distances. (O) Top pane shows an example cross correlation heatmap for all transients observed in one session at the most medial and lateral fibers.

Color plot is sorted for the location of the peak correlation (color intensity). Note that some transients arrive with leftward skew or rightward skew of DMS/DLS

relationships, and others in the middle arrive with peak correlations at zero lag. Colored bars at right indicate that these transients map onto the different flow

patterns identified in Figure S2. Bottom panel shows the histogram of frequencies of peak locations. (P) Labeling and identification of the three major motif-

responses in the optic-fiber grid data; DMS andDLSDA responses arrivewith zero lag (green), medial leads lateral (yellow) or lateral areas leadmedial DS (purple).

Bottom panel shows quantification of the frequency of transients that arrive in these three forms of activation patterns in the optic-fiber grid dataset. (Q)

Quantification of the fractions of transients arriving as various wave types in cannula preparation (replotted from Figure S2E) that have equivalent distribution. (R)

Two mice received a drivable version of the optic fiber grid (left), that allowed us to sample various dorso-ventral locations in the striatum (right). (S) Depth-

dependent quantification of the fraction of transients classified as the different patterns of activation in (P) while the grid was progressively lowered ~500 microns

per day (N = 2 mice).
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Figure S4. The running behavior of mice is more structured and goal directed in the instrumental task, related to Figure 3

(A) Example velocity profile for an instrumental session. Top heat plot shows the trial-by-trial velocity aligned to the end of trial (reward receipt), white dots indicate

the start of the trial. The plot is sorted by distance requirement, but due to variable running speeds, the duration of the trial is variable. Bottom panel illustrates the

mean velocity for different distance contingencies (near, medium and far). (B) Same format as (A) but for Pavlovian session, sorted by required time to wait for

reward. Note that the running behavior of the mouse is disorganized relative to task events (quantified in following panels). (C) Changes in velocity profile in trials

that mice choose to start running immediately or delayed relative to the time since the last trial’s reward. This variability in the latency to start running is quantified

below. (D) Quantification of latency-to-run during training sessions across all mice. Note that mice start running sooner for instrumental trials (blue) than Pavlovian

trials (pink). x axis is displayed in log scale. (E) Example single-trial trajectories of position from trial start during an instrumental-only session and (F) a Pavlovian-

only. Circles denote mouse position at the end of a trial. Note that the distance traveled in the Pavlovian sessions is less than and more variable in instrumental

sessions. (G) Distribution of distance ran in the instrumental (blue) and Pavlovian (pink) sessions. (H) Quantification of number of sessions that mice did not to run

in the Pavlovian task.
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Figure S5. Delayed reward signals promote spatially asymmetric credit assignment, related to Figures 3 and 4

(A) Schematic of transition of RPEs from the reward to predictive tone in canonical TDwith a single RL agent. (B) We progressively delayed the reward response of

a bank of RL agents to simulate the influence of reward waves on credit assignment. (C) At the end of 350 trials of training, agents that received immediate reward

(top traces, blue) had transitioned RPEs to the earliest arrival of predictive cues. By contrast, agents that received delayed reward signals did not fully back-

propagate RPEs. (D) Value function in the agent without delay is fully learned, whereas those with delayed reward haveminimal value ramps. (E) Magnitude of the

RPE at CS onset across training showing that blue (no delay) agents learn faster. (F) Similarly, state value at the end of the trial is also learned faster in agents

receiving immediate reward signals. (G) Direct comparison of CS epoch RPEs for agents experiences different reward delays. (H) Same as (G) for state value. See

Video S7 for animation of these dynamics.
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Figure S6. Within-trial dynamics of MoE model variables at all three levels under different task conditions, related to Figure 5

(A-B) Positive and negative accumulation of distance expert (level-1, equivalent to DMS) weights under (A) instrumental and (B) Pavlovian task condition, for short,

medium and long trial types. Each trace is the average dynamics on the very first trial, averaged for 10 simulations. Similar dynamics accumulate across trials

within a session when the task is repeated (not shown). (C) Within the distance expert, sub-experts (level-2) specialize to distinct contingencies and the weights

ramp accordingly depending on task conditions. (D) RPEs within a sub-expert in which tone transitions occur at unexpected times/distances (RPEs are zero for

sub-experts that perfectly predict the current contingency; not shown). Note the larger magnitude RPEs for short compared to longer trials. Escalation of RPEs

across the trial is due to temporal discounting. Similar to the empirical data, the impact of larger RPEs on short distances is more evident later in the trial. (E)

(legend continued on next page)
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Example evolution of DMS-like distance expert weights across a session. Weights accumulate across trials to provide evidence the agent is in control. (F) Model

velocities (averaged across simulations) recapitulate increase in running in instrumental compared to Pavlovian sessions. Themodel selects speeds in proportion

to inferred responsibility of the distance expert.
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Figure S7. Distance contingency dependent ramping in striatal subregions onMLaxis and responses to trial tone transitions inwidefield and

two-photon imaging, related to Figures 6 and 7

(A) DA ramp dynamics during anticipatory epoch, quantified as area under curve (AUC) for striatal regions on the mediolateral axis. Green lines quantify DA axon

GCaMP6f levels in 4mice for different distance contingencies in instrumental trials, and red lines showquantification for simultaneously captured inert red frames.

Each column represents striatal regions moving medial (left) to lateral (right). Each row represents a single animal. Purple lines are the same format for 6 dLight

expressing mice. (B) Single-trial examples of tone transition responses in widefield data from amouse expressing GCaMP6f. Orange line indicates the escalating

auditory tones within the trial depicted. Rewards are delivered at the termination of tones. (C) Tone responses in DA signals in striatum on the mediolateral axis

(colors indicated by inset on the right). (D) Quantification of the fraction of widefield pixels that have significant responses for multiple tones. Green distributions

are for 6 dLight and 4 GCaMP6f expressing animals and red bars show data for simultaneously captured tdTomato frames. Note that most tdTomato pixels do

respond significantly to any pixels, whereas in the widefield condition, GCaMP and dLight have responses to 2-3 tones on average. (E) Quantification of the

fraction of pixels that respond to each tone change. (F) Two-photon tone responses in two mice, same format as in Figure 7. (G) Anatomical distribution of pixels

that exhibit tone-transition tuning from two animals. Top row summarizes data from the first mouse, and the bottom panel shows the second mouse. Leftmost

panels demonstrate the mean projection of field of view, and the next three panels show the individual pixels that display significant responses to the first tone

change, mid-trial (5th transition) and late-trial (last-tone transition). Note that the anatomical organization of tone-responsive pixels are intermingled. Rightmost

panel shows the anatomical position of all tone-responsive pixels, color coded for the specific transition they respond to. (H) Quantification of how peak response

at tone-transition is affected by distance needed to run on current trial. Our simulations predict that shorter trials will elicit larger PEs. We found a significantly

negative correlation overall in bothmice (p < 0.001, left), but the influence of distancewasmore prominent for later tones (middle, filled bars have p < 0.05) as in the

model (Figure 7A). Right panels show that similar fractions of pixels were responsive to each tone transition for both mice.
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