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A B S T R A C T   

Throughout the educational system, students experiencing active learning pedagogy perform better and fail less 
than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific 
perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in 
cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, 
direct instruction comprehensively describes academic content, while active learning provides structured op-
portunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by 
arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction 
relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer 
social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in 
active learning environments. When working memory becomes overwhelmed, additionally engaging the rein-
forcement learning circuit improves retention, providing an explanation for the benefits of active learning. This 
analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical 
choices at all educational levels.   

1. Introduction 

Neuroscience exploration of both associative and reinforcement 
learning (RL) in experimental animals and humans has deepened our 
understanding of learning and memory from a mechanistic, biological 
point of view. However, extending these mechanistic ideas to the real- 
world application of human education in formal schooling is limited. 
Education suffers from the tension between the goal of transferring 
content information to students versus the goal to train them to become 
skilled independent creators, critical thinkers and users of knowledge. 
These goals are exemplified and embodied in two distinct pedagogical 
approaches, direct instruction (DI) vs active learning (AL, see Box 1 for 
definitions and elaboration). DI focuses upon transferring content 
knowledge (e.g. lecturing) and providing directions for accomplishing 
academic tasks. AL emphasizes the engagement of students in the pro-
cess of manipulating new knowledge. 

The critical contrast between AL and DI pedagogical approaches is 
whether the student is an active agent during class. In DI, the instructor 
actively delivers course content and students passively receive the ma-
terial. In contrast, AL pedagogies require the student to actively 
manipulate and explore the disciplinary space (Box 1). In DI, students 

only become truly active agents when and if they study by purposefully 
recalling or manipulating the material, usually outside of class, and/or 
rephrase and summarize during note-taking (Abel and Roediger, 2018; 
Karpicke et al., 2009). Educational psychologists have documented 
behavioral practices that improve student learning, including retrieval 
practice, spacing and interleaving of content during studying (Agarwal 
and Roediger, 2018). These practices require students to initiate or 
engage in specific studying practices, self-testing or otherwise evaluative 
functions. An instructor who organizes in-class activities for students 
provides practice, models effective studying behaviors and promotes 
learning. All of these recommendations involve students actively 
remembering, practicing, making decisions, solving problems, and 
evaluating progress. Thus, one practical mechanism to achieve student 
agency (exerting effort and making choices) is to have both active 
classroom learning and active out-of-class studying (Hood Cattaneo, 
2017; Lombardi et al., 2021; Sinha and Kapur, 2021; Smith and Baik, 
2021). Additionally, AL pedagogies include group work that engages 
social interactions among students, further motivating learning. 

In meta-analyses at the university level, AL pedagogies produce 
better student outcomes as measured by improved performance on 
summative tests, lower failure rates, and more equitable outcomes 
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(Deslauriers et al., 2019; Freeman et al., 2014; Haak et al., 2011; The-
obald et al., 2020). Since students learn in both situations, can neuro-
science provide mechanisms to support the greater learning gains seen 
in AL? Suggestive evidence comes from the finding that an 
undergraduate-level understanding of synaptic plasticity resonates with 
K-12 educators, as it provides a foundational explanation for how the 
classroom behaviors they orchestrate translate into the content and skill 
mastery desired for students (Dubinsky et al., 2019, 2013). Indeed, after 
learning neuroscience, teachers use synaptic plasticity, among other 
neuroscience ideas, to justify their choices of AL pedagogies (Dubinsky 
et al., 2019; Friedman et al., 2019; Schwartz et al., 2019; Tan and Amiel, 
2019). Here, we explore how contemporary neuroscience explains the 
advantages and benefits of active, student-centered pedagogies 
compared to teacher-centered information transfer, while examining the 
neural mechanisms for both. 

A key gap in understanding educational methodology is why 
learning is enhanced when student agency-centered pedagogies are 
employed. Does AL promote more synaptic plasticity in relevant brain 
areas than DI? Do brain reward and motivation circuits differentially 
regulate learning in active vs passive environments? What neurobio-
logical components bolster learning when student agency and social 
interactions are engaged? This paper examines how the brain mecha-
nisms underlying plasticity, agentic decision-making, error evaluation, 
and social interactions augment networks for learning. We suggest that 
these neural mechanisms form the basis for why AL can be more effi-
cacious than DI. In making these arguments, we interpret and apply 
insights from contemporary literature in systems and cognitive neuro-
science to learning in formal educational settings. 

Our general hypothesis is inspired by prior studies across multiple 

disciplines. We posit that AL promotes a more robust synaptic plasticity 
in students’ brains as they actively engage with task learning objectives. 
The agentic, social, and motivational components of AL synergistically 
amplify signals in the reward circuit to make the experience and course 
content more valuable, meaningful, and memorable (Daniel and Poll-
mann, 2014; Miendlarzewska et al., 2016). On exposure to new content, 
students do not know which information will be useful for the future (e. 
g. exams), blurring the relative value of new content. Students face the 
challenge of sorting course information, predicting what information 
will be useful to retain vs. what will not. Such sorting entails manipu-
lating the information, projecting and iteratively practicing how to 
apply it to problems or anticipated exam questions. When studying, 
students must direct their own learning towards gaps in judgment or 
understanding (Markant et al., 2016). In making these content-related 
decisions, learners implicitly ascribe value to learning objects or 
‘cognitive skills’ as they build mental models of the disciplinary world. 
Rather than hope students do this on their own, AL provides opportu-
nities for all students to explore the content space in a guided yet 
challenging way, taking advantage of social interactions. Finally, during 
assessments, students apply the learned world models and further 
evaluate the correctness of externally or internally generated possible 
answers using the inference machinery trained during classroom prac-
tice and study. Thus, from a neuroscientific perspective, AL classroom 
behaviors parallel those studied in experiments on decision making and 
cognitive processing, making those neuroscience findings relevant to 
classroom learning. 

Box 1 
Active Learning vs Direct Instruction. 

Direct instruction (DI) represents traditional pedagogy based upon transmission or transfer theory or the banking model. DI is often called 
teacher-centered, or sage-on-the-stage (Goswami, 2019). Active learning (AL) refers to pedagogies based upon constructivism and is variously 
called student-centered, cooperative, collaborative, project-based, flipped, or participatory (Goswami, 2019; Hood Cattaneo, 2017; Lombardi 
et al., 2021). In this paper, we contrast these approaches as if they were polar opposites. In reality, these form a continuum, with combinations 
and gradations of distinction among pedagogies. Instructors at all educational levels are capable of adapting these general categories of ped-
agogies to the developmental level of their students. 

DI focuses upon traditional information transfer pedagogies like lecturing. The instructor organizes and delivers content that students listen to, 
annotate, hopefully internalize and then recognize appropriately or manipulate on a high-stakes exam. The roles here are clear: teachers deliver 
knowledge and students absorb it. The immediate value of acquiring the day’s knowledge portion may be low compared to the distal goal of 
finishing the course in good standing. All internalization and mastery occur when students study the material outside of class, at best doing 
problem sets, without any instructor guidance. Most frequently, students reread notes only in preparation for the exam (Karpicke et al., 2009). 
Students schedule their own studying and maintain their own motivation. Student agency for their learning depends upon how motivated they 
are to utilize optimal study techniques and metacognitive evaluation on their own. Motivation to learn is left up to each student and their 
long-term achievement goals. 

AL structures learning experiences where students have to encounter and manipulate the material. Pre-class preparation can require written 
summaries, quizzes, assigned problem sets, readings, or viewing videos or pre-recorded lectures. In-class time encompasses discussing or 
applying the content to real world problems, solving problems, going over quiz answers, designing projects, etc. Such activities engage students 
in recalling, manipulating the information, evaluating their own level of mastery (metacognition) and teaching each other. Requiring end of 
class summaries focuses everyone on the important ideas. Assessments are often interleaved into the daily activities as performance pieces, 
providing both students and instructors with formative feedback prior to, or in place of, summative assessments. In AL, students initially struggle 
with content, statistically exploring the disciplinary content, then practice and refine those ideas through in-class participation where they 
receive feedback for metacognitive evaluation of their own understanding. The salience and value of daily challenges, group work, and the sense 
of a class community working towards a goal maintain motivation, making it harder for less motivated students to become neglectful. For AL, 
student agency is built into every daily preparative and class activity. The instructor designs the course structure and guides activities to promote 
student mastery of the desired knowledge and skills through practice, application and correcting one’s own mistakes. Course structure requires 
student effort, forcing them to engage in daily practice enroute to mastery (Lombardi et al., 2021). 

Both DI and AL may be appropriate at different times within the same classroom (Lombardi et al., 2021; Yannier et al., 2021). Learning takes 
place in all circumstances, but to a higher level and more equitably during AL (Deslauriers et al., 2019; Freeman et al., 2014; Haak et al., 2011; 
Theobald et al., 2020). Notably, the educational gap in STEM learning between majority and underrepresented populations can be reduced using 
AL pedagogies (Haak et al., 2011). As with any human endeavor, the quality of instruction may vary with both pedagogies, as performance in 
some AL classrooms does not surpass DI (Klahr and Nigam, 2004; White et al., 2014).  
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1.1. Overview 

In explaining the neuroscience mechanisms supporting both AL and 
DI, we review neuroscientific concepts related to learning and memory 
from across a broad range of experimental levels; from the cellular and 
synaptic level, to the anatomically connected circuit level, to the func-
tional connectivity derived from fMRI at the network level. Reviewed 
mechanisms include i) synaptic plasticity and its modulation by dopa-
mine, ii) the multiple roles of dopamine in the reinforcement learning 
circuit for decision making (also called the reward circuit), and iii) large 
scale brain networks supporting learning, error processing, and mem-
ory. The reviewed neuroscience evidence draws mostly from experi-
ments on humans, but is supplemented with animal experiments when 
additional detail is needed. 

There are strong parallels between academic instruction and 
laboratory-based associative and reinforcement learning experiments 
studying naturalistic foraging behaviors in model organisms. Specif-
ically, classroom learning leverages brain mechanisms for exploring 
intellectual domains that perform operations on world-model repre-
sentations. Thus, learning a concept, how to apply it, and how long to 
remember it are analogous to learning to navigate and make survival 
decisions in an ecological environment (Johnson et al., 2012; Metcalfe 
and Jacobs, 2010). For example, the rodent and human hippocampus 
can map physical space for navigation but also uses the same relational 
representation to organize, explore, manipulate, and plan through ab-
stract knowledge spaces (Knudsen and Wallis, 2021; Theves et al., 
2019). Moreover, in the reward learning domain, motivational princi-
ples for allocating and sustaining physical effort to pursue rewards 
(Salamone and Correa, 2012) are identical to those that regulate the 
cognitive effort required to search internal memory, deliberate, and 
simulate potential solutions (Vaidya and Badre, 2022; Westbrook et al., 
2021). 

The central focus is that neuroscience mechanisms are able to explain 
how learning and memory occur in situations created by different 
pedagogical practices. We first describe neuroscientific mechanisms that 
are largely synaptic and cellular in nature for a group of pedagogies that 
are common to both AL and DI; spacing, novelty and prior knowledge. 
Second, the mechanisms supporting AL are covered in detail as they 
involve multiple roles for dopamine (DA) and the RL circuit. This section 
considers the RL circuit’s role in intrinsic motivation, agency, error 
evaluation, curiosity, and social interactions. Third, neuroscience 
mechanisms for DI are discussed regarding following instructions, the 
social nature of knowledge transfer, and working memory (WM). Prior 
to concluding, the last section addresses intersecting issues; the value of 
effort, interactions between WM and RL processes, the emergence of 
generalization, and the impacts of AL on individuals and groups. The 
neuroscience literature regarding attention and metacognition, topics 
highly relevant to education, has not yet, in our opinion, converged on 
clear mechanisms and refer the reader to relevant reviews (Cortese, 
2022; Fleur et al., 2021; Lindsay, 2020). 

To maintain the emphasis on behaviors relevant for human educa-
tion, the text is organized by pedagogical categories. In each section, we 
present the educational practices first, followed by applicable neuro-
science mechanisms. Educational examples draw primarily upon the 
university level with K-12 examples provided sparingly. This is appro-
priate since subjects in the majority of neuroscience experiments still 
draw from young adult populations. We recognize, but do not address, 
the rich literature on child development. The underlying neural mech-
anisms of learning and memory are not expected to be completely 
different in children; rather children’s capacities may be limited by 
structural and network maturation which itself may be experience- 
dependent (Donato et al., 2021; Goswami, 2020). 

2. Neuroscience mechanisms of spacing, novelty and prior 
knowledge 

2.1. Plasticity 

Three educational practices common to all good pedagogy - spacing, 
novelty and prior knowledge - can be explained by synaptic plasticity. 
Educational psychologists advocate for using spaced learning and 
retrieval practices as pedagogical strategies that improve student per-
formance (Agarwal and Roediger, 2018). While both strategies are based 
on synaptic plasticity, retrieval practice additionally involves agency 
and will be discussed in Section 3.6. Moreover, investigation into the 
modulation of synaptic plasticity suggests that novelty and arousal can 
contribute to didactic learning. The associative property of plasticity 
(Barrionuevo and Brown, 1983; Nicoll et al., 1988), its modulation by 
novelty and arousal (Lisman and Grace, 2005; McGaugh, 2015), and the 
overlapping encoding of temporally associated novel and old memories 
(Chowdhury et al., 2022; Redondo and Morris, 2011; Sehgal et al., 2018) 
can explain why educators should always establish students’ prior 
knowledge before introducing new material and why making sense of a 
topic requires multiple passes through the material. 

Synaptic plasticity constitutes the central mechanism for learning 
and memory in all nervous systems (Kandel et al., 2016; Schaefer et al., 
2017). The central function of plasticity is to strengthen or weaken the 
cellular connectivity between communicating cells. Plasticity can arise 
from cellular and intracellular changes involving biochemical, struc-
tural, and genetic mechanisms for learning on multiple time scales. 
Synaptic strengthening occurs both at the time of encoding and upon 
reactivation during memory recall (termed reconsolidation or reorga-
nization), serving as the general mechanism for learning and remem-
bering across timescales (Kandel et al., 2016; Moscovitch and Gilboa, 
2022; Schaefer et al., 2017). 

DA modulates synapses and circuits through a diversity of mecha-
nisms at multiple levels. DA regulates synaptic activity through intra-
cellular signaling pathways, modulation of neurotransmitter release and 
postsynaptic receptor function, perturbation of membrane potential and 
excitability, and interaction with other neurotransmitter systems 
(Tritsch and Sabatini, 2012). DA neurons from different midbrain nuclei 
project to widespread targets - sometimes more than one as axons can 
send collaterals to distinct brain areas (Björklund and Dunnett, 2007; 
Haber and Knutson, 2010; Tritsch and Sabatini, 2012). In parallel 
pathways from cortex through striatum, DA produces opposing excit-
atory and inhibitory signals to alter transmission of synapses, resulting 
in permitting or restricting the flow of information back to cortex via the 
thalamus (Cox and Witten, 2019; Shen et al., 2008; Surmeier et al., 
2007). Thus, the Go/No Go nature of these DA control circuit-level 
signals act to gate information flowing through orthogonal 
cortico-basal ganglia-thalamic loop circuits that traverse the striatum 
(Badre, 2020; Haber and Knutson, 2010)(Fig. 1). Beyond these 
well-worked out mechanisms, we focus upon the information that DA 
modulation of cortical, striatal and hippocampal synapses provides for 
circuit and network calculations regarding cognitive behaviors (Berke, 
2018; Cools, 2019; Cox and Witten, 2019). 

While most mechanistic evidence that synaptic plasticity supports 
learning and memory comes from animal studies, investigations in 
humans confirm this relationship (Mansvelder et al., 2019; Spriggs et al., 
2019). Plasticity can be directly measured as LTP and LTD in clinically 
resected human brain tissues (Beck et al., 2000; Chen et al., 1996; 
Mansvelder et al., 2019) and as transcranial magnetic stimulation 
invoked changes in motor-evoked potentials (Stefan et al., 2000). In 
recordings from clinically implanted depth electrodes in the human 
medial temporal lobe, single-unit neuronal firing responds to paired 
novel pictures or to anticipate the picture sequences being learned, 
demonstrating plasticity and the ability to predict future events (Ison 
et al., 2015; Reddy et al., 2015). In humans, cortical volume and con-
nectivity changes have been observed after sensory, motor and cognitive 
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learning (Draganski et al., 2006; Taubert et al., 2010; Wenger et al., 
2021), consistent with synaptic proliferation seen in animal models of 
learning (Schmidt et al., 2021). These changes shape network activity 
across multiple, distributed cortical and subcortical brain regions (Bas-
sett and Gazzaniga, 2011; Bassett and Sporns, 2017). As in vivo mech-
anistic studies in human learning expand, the evidence connecting 
synaptic plasticity to the networks generating cognitive learning will 
solidify further (Mansvelder et al., 2019; Rutishauser, 2019; Szegedi 
et al., 2016). For a synopsis of the neural circuitry contributing to the 
higher-order cognitive processes involved in learning and memory, see  
Box 2. 

2.2. Encoding and spacing 

Studying information multiple times over varying time scales, known 
as spacing, produces deeper learning than studying in a single cramming 
session before a test (Gerbier and Toppino, 2015; Wimmer et al., 2018). 
In humans, spaced learning exceeds massed learning for recall of vo-
cabulary, content, skills, generalization ability, and reward values 
(Cepeda et al., 2006; Smolen et al., 2016; Wimmer et al., 2018). Spaced 
training results in greater retention of associated reward values for 
learned images in the ventromedial prefrontal cortex and hippocampus 
(Vaidya and Badre, 2020; Wimmer et al., 2018). Studies on massed 
learning indicate that performance is proportional to and may be limited 
by WM capacity, the short term capacity to retain information needed 
for immediate thoughts or action (Wimmer et al., 2018). 

Experimentally, the better recall and error tolerance of spaced 
learning has been investigated at cellular and systems levels and recre-
ated in models of neural networks. In brain slice preparations, maximal 
hippocampal LTP and associated structural changes are readily induced 
by stimulations that mimic natural hippocampal complex spikes, spaced 
60 min apart, which appears to allow maximal integration of intracel-
lular second messenger cascades that support plasticity (Diamond et al., 
1988; Smolen et al., 2016). Moreover, memory reorganization during 
sleep improves learning spaced over days (Klinzing et al., 2019). 
Simulation of learning in neural networks attributes this difference to 
the nature of network connectivity as synapses become strengthened 

(McClelland et al., 1995). When faced with how to store new informa-
tion that crosses categorical boundaries of learned associations, net-
works that initially encoded information in a massed manner were 
subject to rapid failure. In contrast, networks that encoded initial in-
formation more broadly from spaced or interleaved encounters could 
incorporate the ambiguous novel information more rapidly and make 
fewer misclassification errors. In other words, interleaving provided the 
CNS network model for this information with the flexibility to identify, 
acknowledge, and incorporate exceptions to rules (McClelland et al., 
1995). This network model correctly identified and emphasized the 
importance of the hippocampus as an intermediate stage of cortical in-
formation processing (McClelland et al., 1995). Therefore, the mecha-
nistic explanation neuroscience provides for spacing indicates active 
pedagogies place students in situations where spacing and interleaving 
are inherently part of repeatedly addressing content during multiple 
applications. In contrast, lecturers must consciously plan to incorporate 
spacing into their content delivery. 

2.3. Novelty and arousal enhance plasticity 

For students, much of academic content is novel, even if the expe-
rience of attending class and listening is not. Emotional arousal, whether 
from social interactions, laughter, fear, or boredom, occurs in school 
settings and is most often disassociated from the academic content. After 
a psychology lecture, viewing an emotionally engaging video, unrelated 
to lecture content, resulted in better performance on the final exam for 
questions pertaining only to that lecture (Nielson and Arentsen, 2012). 
The demonstration that this type of arousal can alter academic outcomes 
suggests regular lectures could include arousing content to engage such 
mechanisms. 

Arousal and novelty act at the cellular level via several mechanisms 
involving the neuromodulators norepinephrine and dopamine to alter 
synaptic plasticity and associated memory formation (Dudai, 2012; 
LaLumiere et al., 2017; Lisman et al., 2011; Lisman and Grace, 2005; 
McGaugh, 2015; Redondo and Morris, 2011). Human dopamine neurons 
respond to a novel image and when synchronized with cortical theta 
activity, predict memory formation (Kamiński et al., 2018). In arousal, 

Fig. 1. Schematic of reciprocally interacting cortico-basal ganglia-thalamic pathways and their relationship to the RL circuit. Illustration of regional brain circuit 
interactions (A) and expanded overview diagram with regional connectivity (B) between cortico-basal ganglia-thalamic pathways and the reinforcement learning 
circuit. Cortical regions project in a topographic manner to the underlying basal ganglia input region, the striatum. Basal ganglia outputs to thalamic areas that 
subsequently project back to cortex complete the long-loop cortico-basal ganglia-thalamic pathways (Alexander and Crutcher, 1990). Topographically, more medial 
regions represent limbic or emotional processing; intermediate regions represent cognitive functioning; and more lateral regions are concerned with sensory-motor 
functions. This topographical arrangement is preserved in reciprocal dopaminergic connections between VTA/SNc and the striatum. The striatum to VTA/SNc 
connections also project to laterally adjacent regions (from medial to lateral) providing for spiraling feed forward integration of control signaling across the striatum 
and the associated functional long-loop pathways. The vmPFC and dACC are specific cortical regions contributing to limbic and cognitive valuation and monitoring 
functions in the RL circuit. Finally, hippocampal projections reciprocally innervate the limbic ventral striatum providing a pathway for control of encoding and 
remembering of emotional and value signals (Haber and Knutson, 2010). Additional connections between hippocampus and cortex are not shown. For a full 
description of anatomical connections in the RL circuit, see (Haber and Knutson, 2010). Abbreviations: dACC, dorsal anterior cingulate cortex; vmPFC, ventromedial 
prefrontal cortex; VTA/SNc, ventral tegmental area/substantia nigra pars compacta; vStr, ventral striatum. Image in A from the Allen Human Atlas - Brain Explorer. 
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norepinephrine, in conjunction with glucocorticoids, changes the level 
of activity in basal lateral amygdala neurons, increasing activity in 
widespread areas supporting multiple memory systems (McGaugh, 
2015; Schwabe et al., 2022). Dopamine (DA) neurons also respond to 
novelty (Bunzeck and Düzel, 2006; Schott et al., 2004; Schultz et al., 
1997), and modulates synaptic plasticity in the striatum, cortex and 
hippocampus to regulate reward learning, cognitive function, and 
memory storage (Duszkiewicz et al., 2019; Lisman and Grace, 2005; 
Puig et al., 2014; Shen et al., 2008; Shohamy and Adcock, 2010). 

Two dopaminergic mechanisms contribute to novelty-enhanced 
encoding. First, DA activation contributes to hippocampal memory 
both within minutes and also after a 12-hour delay following the initial 
experience (Hansen and Manahan-Vaughan, 2014; Rossato et al., 2009). 
In mice, locus coeruleus neurons projecting to the hippocampus release 

DA and norepinephrine during the encoding of novel events, enhancing 
learning within minutes (Duszkiewicz et al., 2019; Kempadoo et al., 
2016; Takeuchi et al., 2016; Wagatsuma et al., 2018). These locus 
coeruleus-derived DA signals may be the novelty detectors that trigger 
the ensuing hippocampal interactions with other dopaminergic meso-
limbic structures (Hansen and Manahan-Vaughan, 2014). Second, 
dopaminergic signaling can enhance hippocampal activation memory 
through synaptic tagging and capture. This process is hypothesized to 
spread proteins associated with strong LTP formation to adjacent syn-
apses activated by weaker encoding and strengthen their long-term 
memory (Dunsmoor et al., 2022; Frey and Morris, 1997; Redondo and 
Morris, 2011). To be influenced by synaptic tagging, weakly encoded 
events must occur within specific time windows, roughly 0.5–3 hr 
before or after the more memorable event (Ballarini et al., 2009; Frey 

Box 2 
Synopsis of the Neural Substrates of Human Learning and Memory. 

The hippocampus rapidly encodes specific memories while the cortex slowly integrates these to extract generalizations across multiple episodes 
based upon task demands. In this arrangement, the hippocampus binds together memories based upon spatial, temporal, and abstract char-
acteristics and acts as an index to their cortical representations, as they contribute to future planning (O’Reilly et al., 2014; O’Reilly and Rudy, 
2001). Replay and reactivation of hippocampal signals immediately, over time and during sleep contribute to coordination of encoding, 
reorganization, and recall across downstream cortical networks (O’Reilly et al., 2014; Swanson et al., 2020). Over time, memory traces reor-
ganize, representing a dynamic interplay between hippocampal and cortical representations that integrate new experiences into existing cortical 
networks. This has been called memory systems reorganization (replacing the older term systems consolidation, (Gilboa and Moscovitch, 2021; 
Moscovitch and Gilboa, 2022)). 

Only a limited number of ideas can be cognitively manipulated at once, termed working memory (WM) (Cowan, 2010). WM involves rapid 
representations in multiple parts of cortex. The hippocampus contributes to WM if the WM task is long enough (>12 s) to require indexing of 
retrieval of recent medial temporal lobe memory for inclusion in the current WM task (Cabeza et al., 2002; Oztekin et al., 2009). WM contributes 
to setting the expectations for the reinforcement learning (RL) circuit. The WM and RL systems interact reciprocally such that low WM loads 
favor rapid encoding, without a RL contribution, whereas high WM loads engage the RL circuit to sort through relative values in a slower process 
that favors longer term retention (Collins and Frank, 2018). 

Within the RL circuit (also called the reward circuit), DA provides signals for which memories, events or items are important or valuable enough 
to retrieve or use (Pennartz et al., 2011). Value calculations based upon prediction errors (PEs) computed in the striatum act to gate which ideas 
or rules held in working memory (WM) prevail in controlling subsequent decisions and actions (Collins and Frank, 2018; O’Reilly and Frank, 
2006). Striatal dopaminergic inputs represent differences between expectations and experience (PEs), acting as learning signals to update 
expectations and gate which policies control subsequent actions or encoding (Schultz, 2016)(Box 4). Generalized subjective value calculations 
during deliberation and outcome delivery are made in two overlapping networks at the core of the RL circuit in humans (Bartra et al., 2013; 
Suzuki et al., 2012). The anterior insula, dorsomedial prefrontal cortex and more dorsal and caudal striatum produce a U-shaped response 
representing arousal or salience. During decision making, the anterior ventral striatum and ventromedial prefrontal cortex calculate a linear, 
valence-sensitive response representing overall subjective value that can be dynamically scaled relative to context. At outcomes, the posterior 
cingulate and anterior insula also signal subjective value (Bartra et al., 2013; Tobler et al., 2005). This holds for both physical and cognitive 
efforts (Bartra et al., 2013; Westbrook et al., 2019). 

The RL circuit functions to control information flow through intersecting circuits (Badre, 2020). Dopaminergic signaling in the basal ganglia 
gates traffic though long-loop cortico-striatal-thalamic circuits that intersect and spiral through it in distinct anatomical subregions (Fig. 1). 
Circuits intersecting the human anterior caudate (dorsomedial striatum in rodents) are associated with cognitive functions, the posterior pu-
tamen (dorsolateral striatum in rodents) are associated with sensori-motor functions, and ventral striatum (ventral striatum/nucleus accum-
bens, in mammals) are associated with value, effort or goal-driven RL-related behaviors (Balleine, 2019; Suzuki et al., 2021). The hippocampus 
and ventromedial prefrontal cortex are part of the medial loops intersecting the ventral striatum, consistent with their role in RL (Haber and 
Knutson, 2010; Pennartz et al., 2011; Shohamy and Adcock, 2010). The medial to lateral spiraling nature of information through these loops 
suggests that signals move from value calculations to cognitive assessment prior to motor execution (Pennartz et al., 2011). This explains why i) 
RL is hippocampal dependent while procedural motor learning is hippocampal independent and ii) initial, slow, effortful motor learning and 
habit execution are respectively gated through the striatum from more anterior to posterior in humans or dorsomedial to dorsolateral in rats 
(Balleine et al., 2015; Pennartz et al., 2011). 

While memories are broadly encoded throughout cortex, different regions appear to contribute more to specific domain general behaviors. MTL 
supports recognition memory, or familiarity while recall depends upon the hippocampus (Yonelinas, 2002). Bidirectional connections between 
the hippocampal area/medial temporal lobe and ventromedial prefrontal cortex provide a route for the ventromedial prefrontal cortex to 
contextually control encoding and retrieval (Preston and Eichenbaum, 2013). The presence or absence of modulatory cholinergic signals shifts 
the temporal dynamics of theta oscillations to bias hippocampus and medial prefrontal cortex towards memory encoding or retrieval, 
respectively (Gedankien et al., 2023; Haam and Yakel, 2017; Hasselmo et al., 1996; Kukolja et al., 2009). Generally, more anterior cortical 
structures set intentions whose associated actions are directed by more posterior portions of prefrontal cortex through spiraling cortical-striatal 
pathways with more caudal than rostral projecting connections (Badre and D’Esposito, 2009; Haber and Knutson, 2010). The dorsolateral 
prefrontal cortex processes incoming information and generalizes relationships, extracting rules and building conceptual understanding of a 
context while the ventrolateral prefrontal cortex maintains goals, policies or rules in communication with the hippocampus (Blumenfeld and 
Ranganath, 2007; Dehaene et al., 1998; Miller and Cohen, 2001).  
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and Morris, 1998; Redondo and Morris, 2011). The ability of DA to 
modulate synapses at distal and prior time points becomes important 
later in this discussion when considering how an outcome signal can 
retrogradely influence the strength of synapses that were active during 
the initial planning and execution of the actions leading to that outcome 
(see Section 3.3). 

Behavioral tagging extends the idea of synaptic tagging to posit that 
novel experiences may enhance the learning of cognitive tasks (Dun-
smoor et al., 2022), as suggested in these examples. Elementary student 
story or picture recall was enhanced when paired with a novel music or 
science lesson a few hours earlier (Ballarini et al., 2013). High school 
students’ long-term retention of a copied graphic was greater when 
preceded by a novel change-blindness or sex education lesson (Ramirez 
Butavand et al., 2020). Beyond timing concerns, the relatedness of the 
novel and target experiences and students’ prior knowledge may impact 
memory-making (Dunsmoor et al., 2022; Quent and Henson, 2022). 

Given the broad temporal window for strengthening of weakly 
encoded memories by a stronger novel experience (Dunsmoor et al., 
2022), replay mechanisms and other aspects of memory reorganization 
(e.g. sleep) may also be contributing to these memory enhancements 
(see Box 2). Novelty and arousal are alerting, but do not necessarily 
reward one’s actions, as the latter engages other mechanisms discussed 
below (Section 3). While arousal, emotions, and novelty can’t be easily 
distinguished in these educational experiments, the evolving mecha-
nistic neuroscience understanding of these phenomena supports the 
utilization of engaging teaching practices to bolster learning and 
memory. Whether new lecture content, but not format, is sufficient to 
activate such mechanisms remains unknown. Considering the tempo-
rally contiguous nature of lessons throughout a school day, spacing 
breaks or varied activities between lessons could possibly promote the 
potentially beneficial effects of novel experiences on academic learning 
(Kelley and Whatson, 2013; Menon and Levitin, 2005). This also raises 
questions about whether adding humor to lectures (demonstrated to 
activate reward centers (Bekinschtein et al., 2011; Neely et al., 2012)) 
could raise arousal neuromodulators sufficiently to enhance retention 
(Li et al., 2020; Mobbs et al., 2003; Zauli et al., 2022). 

2.4. Prior knowledge 

Prior knowledge provides an existing structure for integrating new 
information into one’s understanding of a subject (Shing and Brod, 
2016). Having an existing schema or mental model of an academic 
subject facilitates the encoding of further information into that schema, 
sometimes after only a single exposure, and potentiates its subsequent 
recognition (Shing and Brod, 2016; Tse et al., 2007; van Kesteren et al., 
2014). Across multiple behavioral paradigms, retrieving, activating and 
addressing prior knowledge facilitates learning and memory (Brod et al., 
2013; Council, 2000). 

At a cellular level, linking of new and old information implies inte-
gration or similarities among synaptic connections (Brunec et al., 2020). 
Overlapping populations of neurons encoding temporally close experi-
ences permit the linked recall of one memory by the other. Mechanis-
tically, increases in intrinsic excitability modulated by DA, CREB 
activation, and/or synaptic tagging support memory linking (Sehgal 
et al., 2018). In rat hippocampus, DA induces place cell reorganization 
and links sets of synapses representing old and new spatial memories, 
promoting overlap and stability without altering memory formation 
(Chowdhury et al., 2022; Gonzalez et al., 2021). Analogously, a DA 
novelty signal depotentiates mouse ventral hippocampus to medial 
prefrontal cortex synapses in preparation for new synapse formation 
associated with learning of the novel information (Park et al., 2021). The 
associative nature of LTP and the reactivation of plasticity during recall 
also underpins the benefits of connecting new information to old 
memories (Council, 2000; Wang and Morris, 2010). In humans, the in-
fluence of these DA signals may extend beyond the hippocampus to 
memory encoding in the entire medial temporal lobe (Eckart and 

Bunzeck, 2013). 
Functional connections among cortical regions also support a role for 

prior knowledge in learning and memory. University neuroscience and 
education students learned more new facts about their respective fields, 
but not about the opposite field, when presented with sentences con-
taining both old and new information than when presented with sen-
tences containing only new information (van Kesteren et al., 2014). 
Activity in the medial prefrontal cortex, but not the medial temporal 
lobe, was correlated with successful encoding of the associated new 
information and predicted subsequent year academic achievements (van 
Kesteren et al., 2014). Different hippocampal subregions may be 
responsible for retrieving linked new and prior knowledge (Guo et al., 
2023). In subjects with prior knowledge of a narrative, cortical 
event-related activation patterns emerge in anticipation of the upcoming 
story events (Baldassano et al., 2017). 

These experiments demonstrate DA-modulated plasticity in-
corporates new knowledge into existing schemas, justifying educators’ 
need to connect new information to prior knowledge. We use old 
memories to make predictions regarding future behaviors and states of 
the world. Activating prior knowledge not only provides opportunities 
for encoding via overlapping sets of synapses, it also enables students to 
make predictions regarding how the new content may impact the old. 
Together, synaptic plasticity and its modulation with time and exposure 
to DA constitute a cellular level basis for all forms of learning and 
memory. 

3. Neuroscience mechanisms of active learning 

By positioning students to make choices in discussions, problem 
solving, or other class activities, AL gives them agency and engages the 
RL system as we argue here. When exerting agency, an actor must 
evaluate action outcomes to determine if goals are met and iteratively 
change behaviors to reach goals. This process describes RL, supported 
operationally in the brain by the RL system (Sutton and Barto, 2018). DA 
signaling, underpinned by DA modulation of synaptic plasticity, remains 
at the heart of the RL system contributing value calculations to 
discriminate salient information or events (Bartra et al., 2013; Scimeca 
and Badre, 2012). Whether or how much the RL system becomes acti-
vated in a DI situation where a learner passively receives information 
without the opportunity to apply it towards a goal remains 
undetermined. 

Given the breadth of modulatory DA synaptic mechanisms, multiple 
temporal, anatomical, and contextual roles of DA in cognitive processing 
are to be expected. DA signals differ within the RL circuitry temporally 
based upon the progression of the behaviors themselves. DA signals 
anticipation, cost of effort (Box 3), reward prediction errors (PEs, Box 4), 
and agency at times roughly, but not exactly, corresponding to cue, in-
tervals anticipating or during actions, outcome or reward receipt, and 
evaluation, respectively (Hamid, 2021). Each of these contributes 
distinct information to the overall value calculations in the RL circuit. 
Midbrain DA cell spiking updates expectations useful for future de-
cisions, whereas fluctuating DA levels in striatum regulate the current 
motivation to pursue an ongoing goal (Berke, 2018; Hamid et al., 2016). 
During progress to the goal, ramping DA levels proportional to the 
anticipated future reward, are used to discount time or effort costs 
required to attain the goal (Hamid et al., 2016). This motivational signal 
invigorates ongoing behaviors, while the outcome-associated, ventral 
tegmental DA spiking conveys a reward PE that acts as feedback to 
invested effort, time, plan, and action (Berke, 2018; Hamid, 2021; 
Mohebi et al., 2019). Moreover, the overall success rate of the animals’ 
policies are encoded by tonic dopamine levels that are observed to 
correlate to reward rate and modify behaviors over longer times scales 
(Hamid et al., 2016). A recently observed wave like DA rhythm 
following reward acts to reinforce synapses that created the current state 
(Hamid, 2021; Hamid et al., 2021). This latter mechanism is hypothe-
sized to contribute to the behavioral, circuit, and network level results 
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demonstrating that agency boosts declarative learning, described next. 

3.1. Learning is enhanced by agency 

AL requires students to exert agency; hence the term ‘student- 
centered learning’ (Lombardi et al., 2021; Smith and Baik, 2021). 
Exerting agency requires some level of intentionality and commits one 
to a course of action (Bandura, 1997). Volitional production of 
goal-directed actions also augments learning (Katzman and Hartley, 
2020). Thus, a concrete advantage of AL over DI is the volitional, agentic 
exploration of the content space in classroom settings. Developmentally, 
learning via self-generated actions facilitates learning eye-hand coor-
dination, depth perception, spatial cognition, sound recognition, and 
learning to write (James, 2017). Agency also enhances cognition and 
reasoning abilities. Preschool children exerting agency have expanded 
capabilities to develop communication, planning and problem solving 
skills (Adair, 2014). Similarly, both children and adults exhibit stronger 
memories for outcomes resulting from their own actions when compared 
to actions outside of their control (Katzman and Hartley, 2020), sug-
gesting that agency can modify the influence of rewards on strength of 
memory encoding and recall (Rotem-Turchinski et al., 2019; Ruggeri 
et al., 2019; Voss et al., 2011). Moreover, from a behavioral flexibility 
standpoint, remembering the consequences of one’s actions is adaptive 
for planning future behaviors and assigning appropriate credit to 
executed actions. Because humans and animals exhibit strong preference 
for the opportunity to freely choose among options (Leotti and Delgado, 
2014, 2011), mechanistic insights into agency-related enhancements of 
content memory during AL may leverage specialized brain circuits for 
reward and motivation. Given the centrality of motivational and reward 
learning processes to educational contexts, we provide a brief summary 
of brain circuits for RL, and how their interactions may contribute to the 
benefits of AL. For more explanation of PEs, see Box 4. 

3.2. RL circuit activation during intrinsically motivated and self-directed 
learning 

Canonically, agency has been recognized as an intrinsic reward 
(Bandura, 1997; Deci and Ryan, 1985). The neural correlates of exerting 
agency involve brain reinforcement learning pathways (or the RL circuit) 
that imbue environmental stimuli or outcomes with subjective reward 
values. Thus, the RL circuit uses the estimated values of current and 
future states to guide actions exploring or exploiting the environment. 
Feedback from outcomes or rewards reinforces, both positively or 
negatively, subsequent value calculations and actions to prioritize or 
increase the saliency of instrumental actions or internal curiosity that 
guide exploratory behaviors (Bartra et al., 2013). RL circuit calculations 
have been considered as a common currency for multiple dimensions of 
value, including the value of information itself and whether or not the 
information has instrumental applications (Bartra et al., 2013; 
Bromberg-Martin and Hikosaka, 2011; Marvin and Shohamy, 2016). 
Exerting agency produces a signal that adds to these value calculations 
(Hamid, 2021; Hamid et al., 2021). 

Intrinsic rewards activate the RL circuit and subsequent learning as 
exemplified in the following example. To assess how the RL circuit is 
involved in intrinsically motivated learning, new word learning was 
examined in the context of two sentences where the implied word 
meaning was either congruent or contradictory. Without any extrinsic 
rewards, brain areas associated with the ventral striatum, substantia 
nigra/ventral tegmental area and the hippocampus were activated 
during successful understanding of correct meaning during second 
sentence presentation, indicating that DA signaling was involved in this 
intrinsically motivated learning process (Ripollés et al., 2018, 2016, 
2014). Moreover, the degree of functional connectivity between these 
regions at encoding was proportional to the success of recall a day later 
(Ripollés et al., 2016). 

Evidence also suggests that intrinsic motivation may increase sensi-
tivity to feedback and improve memory. Specifically, increasing 
intrinsic motivation, by having subjects explain how important the task 
is midway through learning a long set of word pairs, increased 

Box 3 
The Value of Effort. 

Scholastic learning requires effort in both AL and DI environments. The physical or cognitive effort required to accomplish a task can act as an 
energy barrier to beginning the task, reducing motivational engagement (Inzlicht et al., 2018). Under these high effort conditions, learning may 
be perceived as aversive because it requires students to leave their comfort zones and exert energy to explore new concepts (Finelli et al., 2018; 
Nguyen et al., 2017; Owens et al., 2020). Cognitive effort associated with a high WM load can produce anxiety (Moneta et al., 2007) or be 
aversive as evidenced by some people’s choice of thermal pain in place of completing a large N-back task (Vogel et al., 2020). Similarly, students 
identify multiple costs associated with ‘doing school’: costs of effort for the assigned tasks, costs associated with conflicting responsibilities, costs 
of lost alternative opportunities, and emotional costs (Flake et al., 2015). Most students respond positively to AL, citing their agency. Student 
resistance to AL can be dispelled by instructor explanations justifying AL strategies (Finelli et al., 2018; Nguyen et al., 2017; Owens et al., 2020). 
Despite these costs, effort also can be rewarding as effort increases personal investment and overall value calculated retrospectively, concur-
rently, and prospectively (Inzlicht et al., 2018). Therefore, success is sweeter the more effort one exerts and contributes to future willingness to 
work hard, especially in an academic setting. Effortful success builds a love of learning, a universal goal of schooling (Anderman, 2021; Ontario. 
Royal Commission on Learning et al., 1995). 

The value of work required to offset effort costs to complete a task is calculated by the mesolimbic DA signals in the ventral striatum (Gan et al., 
2010; Hamid et al., 2016; Salamone and Correa, 2012). Effort calculations reflect the amount of work expended and must be weighed against 
expected rewards (Inzlicht et al., 2018; Salamone and Correa, 2012). In non-human primates, firing rates of mesolimbic DA neurons’ PE signals 
are enhanced following costly actions leading to faster stimulus-reward learning (Tanaka et al., 2019). PEs included the cost of effort as well as 
the value of the juice reward, indicating that the RL circuit integrates both costs and benefits (Tanaka et al., 2019). In humans, DA appears to 
bias choices towards the benefits as opposed to the costs of cognitive effort or timing depending upon the task, the striatal subregion activated, 
and an individual’s genetically-determined regional dopaminergic synthesis capacity (Cools, 2019; Westbrook et al., 2021). More difficult tasks, 
with more associations to be remembered or more difficult multiplications to perform, produce greater ventral striatal responses suggesting that 
greater applied cognitive effort generates greater reward signals and may represent intrinsic motivation (Dobryakova et al., 2017; Hernandez 
Lallement et al., 2014). Thus, RL circuit value calculations scale with the cost of effort, are biased by eventual benefits, and include the values of 
the learning goal and agency. Giving students the agency to control their own learning permits them to make decisions about expending 
cognitive effort, triggering additional activity in the RL circuit.  
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recognition (DePasque and Tricomi, 2015). Reward processing regions 
were activated more by positive than negative feedback after the con-
versation. These motivational interviews increased the sensitivity to the 
feedback, ameliorated the natural decline in attention and motivation, 
and increased activity in the parahippocampal gyrus, leading to 
improved memory (DePasque and Tricomi, 2015). Moreover, the 
intrinsic rewards associated with exerting agency contribute to 
increased self-efficacy, a known factor that influences learning outcomes 
(Blain and Sharot, 2021). Nonetheless, it remains to be determined if 
neural signatures of increased intrinsic rewards in one learning context 
persist to strengthen future intrinsic motivation, as desired in an aca-
demic context. 

Tasks which provide subjects with the agency to choose during 
learning also engage the hippocampus in conjunction with the RL circuit 
(Murty et al., 2015; Ripollés et al., 2016; Voss et al., 2011). When sub-
jects chose to uncover a hidden symbol-object pair to study, they learned 
the pairings better than when instructed to uncover a specific pair 
(Murty et al., 2015). Concurrent fMRI demonstrated activation of the 
orbital frontal cortex and ventral tegmental area, regions involved in 
valuation, plus an association between striatal activation during the 
choice cue and hippocampal activation during encoding. The extent of 
this coupling was proportional to memory strength. Thus without 
explicitly offering a reward, the exertion of agency engages reward 
circuitry and enhances declarative learning (Murty et al., 2015). A 
similar paradigm for learning objects and their positions on a grid pro-
bed subject’s agency by permitting uncovering single objects in a 

self-directed sequence vs in a directed, yoked sequence (Brandstatt and 
Voss, 2014; Voss et al., 2011). Actively controlling the sequence of grid 
openings to study the contents produced fewer positional errors and 
better object recognition than passively moving through the grid. fMRI 
of normal subjects revealed greater hippocampal activity during active 
exploration while individuals with hippocampal damage did not benefit 
from the active viewing condition (Voss et al., 2011), indicating a crit-
ical interaction of RL and hippocampal circuits during agency. Simply 
choosing to view or continue to view visual stimuli enhanced their 
memory a day or a week later (Rotem-Turchinski et al., 2019; Yebra 
et al., 2019). 

The agency-induced memory enhancement may also be influenced 
by the utility or value of the available choices. In games where the 
relative values of agentic control to choose and the values of the choices 
were individually varied, the ventromedial prefrontal cortex computed 
the value of agency (Wang and Delgado, 2019). In behavioral experi-
ments with subjects from 8 to 25, agency increased memory for objects 
that were associated with the ability to make the choice especially when 
the agency had high value (Katzman and Hartley, 2020). Thus, the RL 
circuit combines agency in making a choice, a key component of AL 
pedagogies, with the intrinsic value of the learning object to impact 
learning and memory. 

3.3. Dopamine agency signals 

A recent analysis of agency-linked DA signals across the rodent 

Box 4 
Prediction Errors as Learning Signals for Cognitive Learning. 

At a mechanistic level, DA signals the difference between expected and attained rewards, called prediction errors (PEs), providing feedback that 
can be used as a teaching signal in RL (Schultz, 2016; Schultz et al., 1997). PEs are calculated in the RL circuit for determining utility, subjective 
value, and saliency, all necessary for making decisions and evaluating feedback. PE signals are associated with classical conditioning (O’Doherty 
et al., 2003), instrumental learning (Pessiglione et al., 2006; Zaghloul et al., 2009), declarative memory formation (Ergo et al., 2020), infor-
mation seeking (Bromberg-Martin and Monosov, 2020), and cognitive control (Chatham et al., 2014). In humans, PEs associated with evaluative 
and learning behaviors, can be extracted from PET (Thut et al., 1997), event-related BOLD signals (O’Doherty et al., 2003), EEG signatures 
during declarative learning (Ergo et al., 2020), and extracellular single substantia nigra neuron recordings during DBS implantation (Zaghloul 
et al., 2009). BOLD signals corresponding to PEs associated with reward-based learning across multiple categories of experiences appear 
centered on the ventral striatum or its inputs (Bartra et al., 2013; Daniel and Pollmann, 2014; Schultz, 2016). In these various pathways, PEs 
provide learning signals to guide circuit behaviors towards goals. 

Dopaminergic PEs identified with learning in cortico-basal ganglia motor circuits have been proposed to apply to cognitive behaviors trained in 
education, as these long-loop feedback pathways also include frontal and parietal cortices and the dorsomedial striatum which serve cognitive 
functions (Berke, 2018; Johnson et al., 2012; Metcalfe and Jacobs, 2010; Westbrook et al., 2021)(Fig. 1). Within the cortical-basal ganglia--
thalamic loops, dopaminergic striatal signals regulate motivation, higher cognitive goals, selection of more or less practiced motor or habitual 
behaviors, and the learning that occurs as actions approach goals (Westbrook et al., 2021). Humans value the opportunity to be able to make a 
choice, as represented by anticipatory neural signals in the bilateral ventral striatum even if the anticipated outcome is a monetary loss (Leotti 
and Delgado, 2014, 2011). The dorsolateral and central striatum code the value of the ability to choose, while the central striatum also codes the 
value of individual items (Fujiwara et al., 2013). The fact that agency signals are observed in the same striatal structures that calculate value 
suggests that agency itself has value (Balleine et al., 2021; Hamid et al., 2021) both for motor and cognitive behaviors. 

During memory retrieval and gating of WM, PEs generated in the RL circuit, and ventral striatum in particular, assess the value of the knowledge 
needed to meet a goal (Bartra et al., 2013; Scimeca and Badre, 2012). At encoding, reward anticipation, novelty and positive, but not negative, 
emotional valence further enhance ventral striatal activity and long-term memory formation (Adcock et al., 2006; Wittmann et al., 2008b, 
2008a, 2007, 2005). The PEs in the ventral striatum scale adaptively to reward variability or WM load. Lower variability or WM load leads to 
faster learning while greater variability or load is associated with slower learning, higher error related negativity signals in the EEG (see Section 
3.4) and improved immediate retention (Collins et al., 2017; Collins and Frank, 2018; Diederen et al., 2016; Diederen and Schultz, 2015; 
Rac-Lubashevsky et al., 2023). 

PEs are recruited by both primary and secondary extrinsic rewards (e.g. sex, food, money), depending upon the context (Bartra et al., 2013). 
Moreover, intrinsic or self-generated rewards such as musical pleasure or high-value information similarly activate the RL circuit (Blain and 
Sharot, 2021; Bromberg-Martin and Hikosaka, 2011; Mas-Herrero et al., 2021). In a trivia learning task, both external and internal rewards 
activated the RL circuit but at different times; the ventral striatum was active when the question was posed for external rewards or when the 
answer was given for internal rewards (Duan et al., 2020). In a combined reinforcement learning task, intrinsic rewards activated the 
ventromedial prefrontal cortex more than extrinsic rewards (Chew et al., 2021). These studies indicate that timing or contextual scaling of 
activity as well as the extent of overlap in the participating regions may contribute to the intrinsic/extrinsic motivation distinction but support 
the general role of the RL circuit in calculating the value of information (Mas-Herrero et al., 2021).  
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striatum indicate spatiotemporally multiplexed decision-signals that 
manifest as wave-like patterns (Hamid et al., 2021). Carefully timed, DA 
waves traveling on the medio-lateral axis signal the animal’s agency to 
run at self-determined speeds towards distant rewards. When the rodent 
did not have to run to receive rewards, the waves traveled from lateral to 
medial (Hamid et al., 2021). Because the striatum can be anatomically 
subdivided into smaller regions by virtue of differential cortical con-
nectivity (Aoki et al., 2019; Hintiryan et al., 2016; Hunnicutt et al., 
2016; Matamales et al., 2020), the sweep of the DA waves provides a 
means to integrate actions across various cortical-basal ganglia loops. In 
this view, the waves serve as credit assignment signals to adjacent 
striatal subregions to strengthen synapses associated with producing the 
desired outcome (Hamid et al., 2021). The mechanisms for influencing 
the strength of previously active synapses are related to those discussed 
above, including synaptic tagging. DA waves may also serve to deliver 
value signals to related circuits or may provide for multilevel cognitive 
control (Hamid, 2021). 

This positive modulation of learning by DA waves forms the basis for 
a hypothesis explaining the increased effectiveness of epistemic learning 
in situations involving student agency. If present in humans, such 
spatiotemporal DA waves could similarly provide a specific agency 
signal that dynamically regulates planning, monitoring and executing 
flexible cognitive operations in service of academic content learning. 
Moreover, the acute or chronic disruption of these spatiotemporal DA 
waves has been hypothesized to underlie moments of behavioral 
disengagement, attentional drifts, and uncertainty about behavioral 
control (Vinogradov et al., 2022). While the exact circuit and behavioral 
mechanisms that orchestrate the spatiotemporal coordination of DA 
release are under intense investigation, these empirical findings and 
their theoretical interpretations may provide additional support for how 
agency enhances learning. This hypothesis will drive future research. 

3.4. Active learning involves recognizing and correcting one’s own errors 

Educators have long recognized the importance of learning from 
errors (Metcalfe, 2017; Ohlsson, 1996; Wong and Lim, 2019). Argu-
ments favoring error-less teaching methods are falling into disfavor as 
evidence accumulates that learning from errors produces longer term 
retention and transferability (Clark and Bjork, 2014; Kapur, 2008; Wong 
and Lim, 2019; Zhang and Fiorella, 2023a, 2023b). Initially struggling 
with difficult or ill-structured problems produces immediate failures 
(‘desirable difficulties’, ‘productive failures’), but when followed by 
practice on well-structured problems, errors improve performance on 
measures of near and far transfer (Clark and Bjork, 2014; Kapur, 2008). 
This practice has been termed ‘problem solving prior to instruction’ 
where students review and discuss the difficulties encountered. Teachers 
leverage such reflections to provide subsequent instruction. Reversing 
the order, instruction followed by problem solving, results in lower 
performance (Loibl et al., 2017; Sinha and Kapur, 2021). In all versions 
of these error-focused pedagogies, learners exert agency when strug-
gling initially in an unfamiliar content space, when generating ideas to 
solve the problem, when reflecting upon their performance to correct 
errors, and when iterating this process. 

Intentionally generating incorrect statements and subsequently cor-
recting those ideas produces better immediate recall and far transfer 
effects than the errorless processes of simply reading the material, 
generating correct statements with synonymous meanings, or correcting 
peers’ errors (Metcalfe, 2017; Wong, 2023; Wong and Lim, 2022). 
Generating false statements produces more repetitive interactions with 
the material (e.g. recognize correct concept and its limits, generate 
error, fix error) than simply studying (i.e. recognize correct concept), 
generating synonyms (recognize correct concept, generate synonym), or 
simply correcting others (recognize correct concept and its limits, fix 
error) (Wong, 2023; Wong and Lim, 2022). Thus, generating content 
relevant ideas forces students to explore the content’s limits, evaluate 
veracity, and reflect; all cognitively agentic acts. While fMRI correlates 

of this behavioral paradigm have not yet been explored, the combined 
extra agency, retrieval and value judgements for generating and cor-
recting errors would be predicted to engage the RL circuit. 

Learning from errors is central to the Montessori method, which 
develops independent student mastery of motor skills and intellectual 
concepts through exploration of limited object sets. Students play, cor-
rect errors, repeat, and practice until they feel the reward of accom-
plishing the task (Montessori, 1912). Comparing students from 
Montessori and environmentally matched traditional schools, the 
Montessori students were more likely to self-correct (Denervaud et al., 
2020a, 2020b). When distinguishing correct from incorrect math 
problems in the fMRI scanner, functional connectivity was greater be-
tween the anterior cingulate and the orbital frontal cortex following 
incorrect trials for Montessori students relative to traditional students. 
By contrast on incorrect trials, traditional students had stronger 
coupling of the medial frontal cortex and the hippocampus relative to 
Montessori students. This suggests that Montessori students may be 
more attuned to error monitoring while traditional students may rely 
more upon memory for recalling correct answers. Together, these ex-
periments support the idea that self-directed, agentic learning influences 
error recognition, performance monitoring, and goal-adaptive behaviors 
during academic content learning (Denervaud et al., 2020a). 

How do behavioral errors in classroom learning relate to neural PEs 
considered to be learning signals? In an experiment more closely aligned 
with academic learning, human subjects were scanned when receiving 
feedback on answers to a history test, representing semantic knowledge 
acquired a day earlier from reading an assigned passage. Activity in the 
ventral striatum, dorsolateral prefrontal cortex and parietal cortex 
correlated with the PEs and predicted subsequent memory performance 
a week later, confirming the importance of recognizing errors during 
practice (Pine et al., 2018). PEs and the associated response monitoring 
circuitry of the dorsal anterior cingulate contribute to evoked 
error-related negativity in EEG that arrives ~90 ms after inaccurate 
choices in RL tasks (Cockburn and Frank, 2011; Debener et al., 2005; 
Frank et al., 2005; Holroyd and Coles, 2002). Characteristics of the 
error-related negativity match those expected of a PE in a RL model and 
predict learning from the errors being signaled (Frank et al., 2005; Fusco 
et al., 2022; Holroyd and Coles, 2002; Philiastides et al., 2010). More-
over, intracranial and scalp recorded error-related negativities correlate 
with firing of single neurons in human dorsal anterior cingulate in 
response to recognized errors. This activity predicts post-error slowing 
of subsequent behavioral responses, consistent with the role of the 
anterior cingulate in error monitoring (Debener et al., 2005; Fu et al., 
2019). Although error-related negativities do not rise to consciousness, 
error-related positivities (~300 ms following the error) do. These 
error-related positivities appear to indicate the awareness of having 
committed the error and predict subsequent post-error slowing in the 
next trial (Kirschner et al., 2021; Murphy et al., 2012; Nieuwenhuis 
et al., 2001) (but see (Debener et al., 2005)). Learning from getting 
things wrong increases both error-related negativities and error-related 
positivities compared to learning from getting things right (Frank et al., 
2007). Thus, ventral striatal PEs do not themselves trigger conscious 
error awareness. However, the larger conflict monitoring RL circuit 
combines with top down cortical inputs to produce error awareness and 
post-error slowing providing a neural mechanism for conscious identi-
fications of errors and the potential to learn from them (Cockburn and 
Frank, 2011). From the larger perspective of developing cognitive net-
works, making mistakes is critical for learning the higher-order statis-
tical properties of academic content and their relationships within the 
disciplinary space (Lynn and Bassett, 2020). 

3.5. Retrieval practice for learning 

Making and correcting one’s own errors, i.e. acting agentically, im-
proves performance, consistent with retrieval practice as a productive 
strategy for learning (Montessori, 1912). When learning paired 
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associations, repeated recall under testing conditions is superior to 
simply viewing the pairings during repeated studying (Karpicke and 
Roediger, 2008) or even to manipulating the material when constructing 
a concept map (Karpicke and Blunt, 2011). Actively retrieving the 
content, out loud or to oneself, appears to improve retention on a 
delayed test more than simply viewing the content or monitoring the 
process of doing the retrieving (Abel and Roediger, 2018). Engaging in 
retrieval practice with feedback also serves to increase learner motiva-
tion to continue to investigate the topic at hand (Abel and Bäuml, 2020). 
Critically, learners exert agency during retrieval. Learners search their 
own memories to retrieve a target object and internally evaluate 
whether the found object or idea is correct, i.e. meets expectations. This 
agentic, repeated practice would be expected to engage the RL circuit 
and hippocampal associated processes of reorganization and replay. 

Several fMRI studies highlight contributions of hippocampal mem-
ory functions and regions associated with reward processing to the 
success of retrieval practice, also called the testing effect. Activity in 
ventral striatum or putamen figured prominently during the studying 
and testing phases of word-pair learning for self-testing compared to 
restudying (Marin-Garcia et al., 2021; van den Broek et al., 2013; Wing 
et al., 2013). During the practice phase, self-testing, compared to 
restudy, engaged the lateral temporal cortex, medial prefrontal cortex 
and anterior hippocampus for successfully remembered pairs. Regions 
functionally coactivated with the hippocampus that predicted final 
learning one day later included the posterior cingulate, ventromedial 
and ventrolateral prefrontal cortex (Wing et al., 2013). New learning 
after an error was correlated with activity in the posterior inferior pa-
rietal lobule, an area associated with recognition memory, suggesting 
that retrieval practice works because this activity serves to refresh the 
associations being encoded during subsequent practice (Nelson et al., 
2013). In line with its role in recognition memory, the inferior parietal 
lobule cumulatively calculates and compares the relative expected value 
of information regarding choices in the current context (Louie et al., 
2011). Thus, detection of RL circuit contributions to the testing effect 
suggests active recall or self-testing, in addition to increasing plasticity, 
increases motivation, effort and/or agency signals while bolstering as-
sociations for learning and memory. 

3.6. Curiosity, information, and the intrinsic rewards of knowledge 
acquisition 

Active learning encourages and enhances student curiosity. Curiosity 
has been characterized as exerting agency while seeking information to 
enhance learning and memory (Kidd and Hayden, 2015). Curiosity 
represents the intrinsic motivation to autonomously decide to become 
familiar with an unknown object, environment or intellectual space 
(Harlow, 1953; Tolman, 1926). Among college students, intrinsic 
motivation from learning content in order to teach it to others produced 
greater conceptual learning than simply learning content for the 
extrinsic motivation of doing well on a high-stakes test (Benware and 
Deci, 1984). When learning foreign language vocabulary words, long 
term memory was better when participants were self-motivated than 
when they received monetary rewards (Kuhbander et al., 2016). AL 
increases university students’ intrinsic motivation, measured psycho-
metrically and as demonstrated in an increased focus on learning 
biochemistry content rather than getting good grades (Cicuto and 
Torres, 2016). Asking students to make predictions regarding hierar-
chical relationships across a series of geography questions generates 
curiosity and improves immediate retention (Brod et al., 2018). In all of 
these instances, rewards gleaned from satisfying intellectual curiosity 
enhance conceptual learning. 

Comparisons across multiple primate and human experiments on 
curiosity indicate that elements of both reward and memory-associated 
circuits are involved (Cervera et al., 2020; Kidd and Hayden, 2015). In 
non-human primates, circuits for seeking, integrating and appraising 
information involve striatum, anterior cingulate, the lateral habenula 

and other frontal and parietal areas (Bromberg-Martin et al., 2022; 
Bromberg-Martin and Monosov, 2020; Cervera et al., 2020; Jezzini 
et al., 2021; White et al., 2019). In humans, activity in the substantia 
nigra/ventral tegmental area, their afferents, ventral striatum, hippo-
campus, and their interconnections increased in proportion to the de-
gree of curiosity, willingness to pay, and subsequent recall of content 
and incidental information present during trivia learning (Gruber et al., 
2014; Kang et al., 2009). Reward signals between the substantia 
nigra/ventral tegmental area and hippocampus are also present during 
rest post-learning, contributing to reorganization (Gruber et al., 2016). 
When choosing to see information predictive of task or gambling out-
comes, the subjective value of information is encoded in the ventral 
striatum with variable contributions from ventromedial and orbito-
frontal prefrontal cortex and medial frontal gyrus (Charpentier et al., 
2018; Kobayashi and Hsu, 2019). In addition to RL circuit activation, 
intrinsic motivation may engage more elaborate cortical processing 
beyond that associated with external rewards, as learning trivia to 
satisfy curiosity, but not for financial gain, engaged the frontoparietal 
network (Duan et al., 2020). Accordingly, agentic, intrinsic motivation 
engages learning through activation of both reward and cortical asso-
ciation pathways. 

In academic environments, inherent motivation to engage in infor-
mation search may be very low when the subject matter appears over-
whelming, unknowable, not applicable or already known (Gottlieb and 
Oudeyer, 2018). Schools at all levels are designed to short-circuit this 
arduous search task by providing a guided path through the acquisition 
of skills and background knowledge. The inherent tension that develops 
is the trade-off between providing every bit of background knowledge 
through DI versus providing an iterative combination of some content 
and appropriate AL challenges for learners to explore within the given 
context. In the latter situation, the partial introduction raises questions, 
providing greater (but not overwhelming) uncertainty and associated 
curiosity among learners (Gottlieb and Oudeyer, 2018). 

3.7. Social interactions activate the RL circuit 

From an educational perspective, group social interactions, as part of 
AL, motivate and engage reluctant learners, eliciting agency broadly 
among students. Learning socially in groups increases student accuracy 
and confidence, generates valuable information about the academic 
context, and produces intrinsic motivation (Tullis and Goldstone, 2020; 
Vélez and Gweon, 2021). Discussing low stakes quiz answers with peers 
in dyads helped students correct errors by practicing recall, forcing 
verbalization and hence crystallization of reasoning, stimulating meta-
cognition to recognize errors, and creating new knowledge (Tullis and 
Goldstone, 2020). Even in a genetics “lecture” class, small group dis-
cussions constructing answers to clicker questions engendered greater 
individual conceptual understanding that benefited initially naïve stu-
dents and were not attributable to social conformity (Smith et al., 2009). 

From a neuroscience perspective, people learn socially from advice, 
instruction and observing others (Clark and Dumas, 2015). Learning by 
observing how others respond can increase the observers’ successes 
(Daniel and Pollmann, 2014). Brain mechanisms contributing to the 
benefits of social learning include the RL circuit. The central ideas 
emerging from a thorough synthesis of the social basis of learning and 
neural networks processing social interactions are i) social interactions 
promote subsequent learning through stimulation of the RL circuit and 
ii) social interactions involve individuals’ agency, as part of the intrinsic 
drive to be socially engaged (Clark and Dumas, 2015). The social aspects 
of learning in groups creates additional motivational, salience and 
contextual neural signals to reinforce encoding and recall (Redcay and 
Schilbach, 2019). Cooperation is inherently rewarding as evidenced by 
activation of reward structures during mutual cooperation in prisoner’s 
dilemma and trust games (King-Casas et al., 2005; Rilling et al., 2004). 
Information exchange among students in groups represents similar 
mutual cooperation. When learning in groups, activity in ventral 
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striatum and ventromedial prefrontal cortex may signal conformity with 
the majority suggesting that value calculations contribute to social 
learning or reciprocally, social interactions contribute value to making 
decisions about what is important to learn (Olsson et al., 2020; Redcay 
and Schilbach, 2019). Learning from viewing others’ choices contributes 
to expected value calculations, producing a social PE in the left putamen, 
and increasing confidence in choices (Zhang and Gläscher, 2020). These 
socially generated value signals resemble and combine with signals 
related to self-choice during decision making (Ruff and Fehr, 2014; 
Zhang and Gläscher, 2020). The striatum computes social PEs for 
pro-social behaviors, judging other people with respect to oneself, 
learning about others or from others vicariously, choosing to follow 
normative social values, and assigning credit for agency (Báez-Mendoza 
and Schultz, 2013; Ruff and Fehr, 2014). Social learning also draws upon 
metacognitive processes that can augment learning about one’s progress 
regarding specific content (Heyes, 2016; Olsson et al., 2020). Overall, 
learning in a social context further activates the RL circuit and adds 
value to the content to be learned. 

Even the simplest form of social interactions - eye contact - enhances 
learning. Perceiving that a social partner’s gaze and attention are 
cooperatively aligned with one’s own, indicative of a social interaction, 
activates the ventral striatum and mesolimbic dopaminergic system 
(Pfeiffer et al., 2014). Jointly gazing with another person towards a 
common object activates the ventral striatum and ventromedial pre-
frontal cortex among other brain regions (Schilbach et al., 2010). The 
ventral striatum was uniquely activated when the subject exerted 
agency to initiate the joint gaze with the experimenter. Less activation 
occurred with a video of the experimenter or a computer as a companion 
(Redcay and Schilbach, 2019; Schilbach et al., 2010). This joint atten-
tion promotes memory (Kopp and Lindenberger, 2011; Schneider and 
Pea, 2017). 

These findings indicate that even nonverbal social interactions are 
inherently rewarding and promote learning. Moreover, these learning 
enhancements of social interactions range from eye contact and 
communication to feedback on how to interact socially and how to 
adjust to novel ideas and situations (Clark and Dumas, 2015). The 
benefits of group work in AL classes derive from activating the RL circuit 
and are absent in a conventional lecture class. 

4. Neuroscience mechanisms of direct instruction 

Lectures directly and efficiently depict information about the disci-
plinary world, eliminating the need for trial-and-error exploration of an 
entire body of knowledge (French and Kennedy, 2017). Informative 
lectures provide disciplinary insights, arguments, and context. These 
lectures can engage, enlighten, explain, and entertain while building 
attentional and note-taking skills. However, lectures can also overload 
attentional systems or become boring (French and Kennedy, 2017). 
Adults rate teacher quality lower if teachers fail to communicate the full 
range of useful knowledge (Bass et al., 2015). University physics stu-
dents felt they learned more in DI than AL classes, despite empirical 
demonstration that they learn more with AL, reflecting the cultural 
expectation that knowledge transfer is more valuable than application 
(Deslauriers et al., 2019). Even preschoolers infer adults’ intention to 
teach and assume that the content demonstrated includes all possibil-
ities, a process that decreases subsequent exploration and self-discovery 
of additional, undemonstrated toy properties (Bonawitz et al., 2011). 
Thus, the expectations that formal education efficiently provides 
knowledge rather than the opportunity to explore knowledge spaces 
may be set early in the educational trajectory. 

4.1. Following instructions 

One easy form of information transfer adaptable to experimental 
tasks is instruction delivery. Teachers provide both content knowledge 
and directions. Understanding instructions can be viewed as 

constructing a mental model. With increasingly longer instructions, 
performance drops, with the latest additional rule having the least 
impact on behavior (Dumontheil et al., 2011). By analogy, a lecture 
describing disciplinary rules may lose impact the longer it proceeds; 
however, information devaluation has not been examined experimen-
tally. The more comprehensive the instructions, the more model-based 
the human performance (Feher da Silva and Hare, 2020). Explicit in-
struction in the changing probabilities encountered in two step experi-
mental tasks increased the number of subjects exerting control using 
model-based rather than model-free approaches. This suggests that 
when given knowledge of contextual probabilities, subjects formed a 
mental model of the task faster than when acquired through trial and 
error (Castro-Rodrigues et al., 2022). This supports the position that 
students need instruction and should not have to learn every disciplinary 
idea through trial and error. 

Information transfer would be expected to activate different cortical 
networks than AL. During instruction delivery, retrieval and imple-
mentation, widespread cortical activation occurs, indicative of a tran-
sient global reorientation to the presentation of the new rule(s) 
(Hampshire et al., 2019; Kang et al., 2022). Frontoparietal network 
activation builds tonically as rules are added and subsides sequentially 
with time and along the rostral to caudal axis as short-term rule 
following becomes routine (Dumontheil et al., 2011; Hampshire et al., 
2019, 2016). In a stimulus-response WM task, frontoparietal network 
coding of procedural information predicts instruction implementation, 
with the parietal cortex encoding both instructions and procedures, and 
the frontal cortex only encoding procedures (González-García et al., 
2021). Rapid procedural rule following, where rules change on each 
trial, involves lateral prefrontal cortex, an area associated with cognitive 
flexibility during novel task execution (Cole et al., 2016, 2013). Proce-
dural instructions occur in both DI and AL classrooms and would be 
expected to activate comparable cortical networks. Learning in-
structions, analogous to rules governing a disciplinary space, transiently 
appears to preferentially activate the frontoparietal and related net-
works (Cole et al., 2016, 2013; Hampshire et al., 2016). Verification that 
these same networks are engaged during lectures is warranted. 

4.2. Direct instruction as social learning 

DI is a social interaction in the classroom and might be expected to 
activate the RL circuit. However, this only happens under limited cir-
cumstances. Following instructions can itself be rewarding, especially if 
that instruction was delivered by a human, eliciting conformity to a 
socially acceptable norm, as in a classroom (Biele et al., 2011). When 
teachers provide correct answers, this may positively or negatively 
reinforce students’ own answers and self-evaluation. However, 
providing correct answers also qualifies as information transfer, espe-
cially if students did not work the problems themselves. After following 
advice, increased activity in the left caudate and septum may signal 
increased trust in the advice through downstream oxytocin release 
(Biele et al., 2011). Consequently, following instructions may be 
rewarding and bias the evaluation of effort towards favoring in-
structions, even when they are incorrect and PEs are negative (Doll 
et al., 2011, 2009). In these cases, maintained compliance with incorrect 
instructions results in a bias. Striatal value calculations become distorted 
to confirm this instruction (confirmation bias) and reject the calculated 
error from contradictory evidence (Doll et al., 2011, 2009). Moreover, 
false instructions appear to override experiential learning among adults 
(Decker et al., 2015), suggesting that DI may result in false beliefs. 

DI may also diminish activity in the RL circuit that regulates flexible 
behavioral engagement. Dorsolateral prefrontal cortex representation of 
the instructed task was associated with the suppression of activity in 
ventromedial prefrontal cortex, ventral striatum and parahippocampal 
gyrus, suggesting acquired knowledge of the task removed the need to 
recall and evaluate outcomes via RL (Atlas et al., 2016; Koban et al., 
2017; Li et al., 2011). Thus, the striatum only contributes to 
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frontoparietal network behavior at initial instruction onset where it may 
be involved in gating cortical activity or selecting rules (Hampshire 
et al., 2019, 2016; Koban et al., 2017). This observation supports the 
flexible motivation hypothesis that states ventral striatum and DA are 
required for flexible behavioral engagement but not cued performance 
in rodents (Nicola, 2010). Indeed in humans, instruction greatly di-
minishes PEs and BOLD activity in the ventral striatum, ventromedial 
prefrontal cortex and the hippocampus for reward-based associative 
tasks, suggesting that subjects do not exert as much effort or agency 
when following advice (Biele et al., 2011; Li et al., 2011). Instead of 
valuing the content and one’s agency in learning it, during DI, the 
ventromedial prefrontal cortex, ventral striatum, and RL circuit become 
responsible for evaluating how well experiences match the instructed 
state (Koban et al., 2017). 

4.3. Working memory during direct instruction 

During lectures, students listen to instructor explanations, possibly 
view slides or whiteboards, and take notes as they hopefully construct a 
mental model of the disciplinary content space. All of these activities 
require WM. Working memory limits cognitive load capacity, subse-
quently constraining retention during lectures (Jordan et al., 2020). 
When engaged in greater cognitive effort, i.e. greater WM load, reaction 
times of responses to interrupting probes increase, permitting relative 
comparisons between cognitive loads during different tasks (Piolat et al., 
2005). Writing requires more cognitive resources than either reading or 
listening (Tindle and Longstaff, 2015). Note-taking during lecture, while 
slightly less demanding than composing original text, is comparable to 
the effort expended by an expert planning a chess move and more 
demanding, because of time pressures, than note-taking while reading 
(Piolat et al., 2005). Auditory and visual information can also compete 
for learners’ attention. Overloaded lecture slides can suppress encoding 
and retention of lecture information only presented orally (Wecker, 
2012). Thus, during a lecture, students’ efforts are highly dependent on 
WM capacity (Piolat et al., 2005). Cycles of student inattention are 
regularly observed, even during short lecture segments of 9–12 min, and 
can begin within 30 sec of lecture onset, as assessed when chemistry 
students self-report lapses by tapping a clicker (Bunce et al., 2010). 
Interspersing student-centered pedagogies such as clicker or test ques-
tions into lectures decreases mind-wandering in their aftermath and 
increases performance on subsequent content tests (Bunce et al., 2010; 
Szpunar et al., 2013). 

A full explanation for how information in WM becomes either long 
term memory or forgotten remains elusive. Proposed neural mechanisms 
for WM range from reverberation within local cortical synaptic con-
nections to large scale network interactions (Braun et al., 2015; Miller 
et al., 2018). Insights into the mechanisms of memory formation when 
learning from natural sequences of events may eventually provide a 
model for learning from sequenced ideas in lectures. Experimentally, 
memories associated with event boundaries have been explored using 
movies, audio files, and written naturalistic narratives (Ben-Yakov and 
Henson, 2018; Davis and Campbell, 2023; Michelmann et al., 2021). 
Event boundaries discerned from abrupt changes in neural activity 
(EEG, electrocorticogram) or BOLD signals agree with human segmen-
tation of these natural storylines (Baldassano et al., 2017; Michelmann 
et al., 2021; Silva et al., 2019). During listening to a narrative, cortical 
representations of information appear as temporal or meaningful chunks 
that may later be encoded into memory by the hippocampus at the end 
of an event. These chunks can be nested producing a hierarchy of 
temporally resolved events (Baldassano et al., 2017). When initially 
listening to stories, information flows from cortex to hippocampus at 
natural boundaries between events within the story. When listening a 
second time, information flow is reversed at a peak in hippocampal 
activity, predictive of a memory being recalled (Michelmann et al., 
2021). At event boundaries, the hippocampus retrieves past events and 
integrates immediate and distal past events into sequences associated 

with coherent narratives (Cohn-Sheehy et al., 2021). Functional 
communication between the hippocampus and subnetworks or regions 
associated with the default mode network are also increased at event 
offsets (Barnett et al., 2024). The amount of boundary-associated hip-
pocampal pattern reinstatement predicts accuracy in natural recall of 
story elements, both immediate and delayed by 2 days (Barnett et al., 
2024; Cohn-Sheehy et al., 2021). From a neural processing perspective, 
an event boundary indicates the current mental state has ended and the 
mental model requires updating (Brunec et al., 2018) but the cellular 
mechanisms for event boundary transitions remain unknown. Moreover, 
large reward PEs can act as event boundaries in serial task paradigms 
(Rouhani et al., 2020), but whether PEs related to predicted state tran-
sitions are related to learning event boundaries remains unexplored 
(Hamid et al., 2021). 

This event-boundary information exchange from cortex to hippo-
campus has been proposed to contribute to one time learning via in-
formation transfer (Michelmann et al., 2021), an ideal, putative 
mechanism for learning from DI. From an educational point of view, 
several questions are raised. Is nonfictional content delivered in lectures 
parsed and remembered according to similar event boundary functional 
communication? What constitutes an event boundary in a lecture, 
especially when prior knowledge is low? How does the emotional 
quality of events influence the strength of the hippocampal-cortical 
communication at offset boundaries? While didactic content often un-
folds as a sequenced story about objects in the subject domain (e.g. the 
cyclic movement of neurotransmitter during synaptic transmission), it 
remains to be determined if such hippocampal reinstatement occurs for 
abstract objects. Most importantly, how does this event-based segmen-
tation of memorable semantic content interact with the value calcula-
tions within the RL circuit? A deep mechanistic understanding of such 
interactions will inform choices regarding the optimal mixture of AL and 
DI pedagogies. 

5. Intersections 

5.1. Interactions between working memory and reinforcement learning 

DI relies upon WM, which is limited (Cowan, 2010; D’Esposito and 
Postle, 2015). AL engages students in experiences that reduce the sta-
tistical uncertainty regarding how the disciplinary world behaves. In 
learning course material, students use WM to keep topic content and 
goals in mind while using the RL system to explore options, solve 
challenges, and reduce personal uncertainty by gaining confidence in 
appropriate interpretations. 

Mechanistically, WM and RL cooperate with WM setting the expec-
tations to be evaluated by the RL circuit (Collins and Frank, 2018). Both 
BOLD- and EEG-derived measurements of WM and RL were tracked 
during experiments in which subjects learned through trial and error 
sets of action associations for varying numbers of symbols. The two 
systems cooperated dynamically from stimulus presentation to feed-
back. When the number of stimulus associations was low and easy to 
learn rapidly, WM measurements predominated. As the number of as-
sociations increased, learning slowed and the RL measurements domi-
nated with the feedback expectations set by WM (Collins et al., 2017; 
Collins and Frank, 2018). This powerful interaction between learning 
mechanisms needs to be verified for longer term retention times. 

During lectures, students’ WM system is primarily engaged, limiting 
the cognitive power applied to understanding and internalizing the 
current content. As the instructor sets the pace of information delivery, 
learners’ WM is taxed as they struggle to keep up with unfolding ideas 
and take notes. While the high WM load should increase concurrent RL 
PE signals (Collins et al., 2017; Collins and Frank, 2018), students have 
no time to reflect, connect content or question, processes that would 
engage their RL circuits. They retain more when they summarize rather 
than type verbatim during note taking (Feng et al., 2019; Horbury and 
Edmonds, 2021). Interleaving AL exercises with content delivery would 
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be expected to engage students’ RL system, helping to sort through the 
applicable possibilities kept in mind through WM. 

5.2. Generalizing and higher order thinking 

Educators strive to develop students’ higher order thinking or the 
capacity to use basic knowledge to generalize, apply, analyze, synthe-
size, infer, and evaluate information (Bloom, 1956). While Bloom’s 
taxonomy has been revised multiple times, the idea that analysis and 
knowledge utilization are built upon retrieval and comprehension re-
tains elements of its hierarchical heuristic (Anderson and Krathwohl, 
2001; Marzano and Kendall, 2007). The additional practice afforded by 
AL approaches increases students’ ability to perform at the higher levels 
of Bloom’s Taxonomy. For example, in reforming an undergraduate 
neurophysiology course, introduction of clicker questions, more home-
work, group work, and feedback sessions improved student performance 
on course exams while simultaneously increasing the Bloom’s levels of 
thinking skills on test questions (Casagrand and Semsar, 2017). 

From a neuroscience perspective, shared conceptual representation, 
schemas, or their neural representations, cognitive maps (Tolman, 
1948), are critical for incorporating new ideas, formulating abstractions, 
and generalizing across contexts (Behrens et al., 2018; O’Keefe and 
Nadel, 1978; Redish, 1999; Shenhav et al., 2017; Vaidya and Badre, 
2022). Replay, repetition, and remapping contribute to the generaliza-
tion process (Knudsen and Wallis, 2021; Liu et al., 2019). The hippo-
campus maps the details of the current task structure while the PFC 
extracts task commonalities across multiple encounters leading to 
generalization (Mansouri et al., 2020). Ensembles of neurons within 
primate dorsolateral prefrontal cortex, anterior cingulate, and hippo-
campus code for the generalization of context, stimulus, and value var-
iables as decisions are being made, reducing the dimensionality of the 
possible decision space (Baraduc et al., 2019; Bernardi et al., 2020; 
Knudsen and Wallis, 2021). When contexts shift, inference occurs uti-
lizing the information within these ensembles to generalize, promoting 
more rapid learning (Bernardi et al., 2020; Park et al., 2020). In human 
hippocampus and entorhinal cortex, activation patterns resemble ab-
stract grids, signal contextual relationships, and integrate and map 
temporal, spatial, categorical and contextual dimensions (Brunec et al., 
2020; Constantinescu et al., 2011; Theves et al., 2019). Ventromedial 
prefrontal cortex value calculations distinguish among common ele-
ments (Cortese et al., 2021). In RL tasks, the entorhinal cortex, medial 
prefrontal cortex, and frontoparietal networks generalize responses 
from similar contexts, but not from widely differing task structures 
(Baram et al., 2021; Vaidya et al., 2021). Thus, broad network activity 
appears to create the mental flexibility for making inferences across 
generalized experiences and their associated cognitive maps (Park et al., 
2020; Vaidya and Badre, 2022). Whether such generalization can occur 
in the absence of agency or the RL circuit, i.e. just by observing yoked 
progress through experimental tasks, remains to be tested. 

When modeled mathematically, artificial neural networks must be 
trained repeatedly, slowly, and simultaneously on two separate but 
related tasks to mimic the ability to generalize and rapidly adapt when 
confronted with a novel situation (Botvinick et al., 2019; Wang et al., 
2018). Additionally, mathematically nested RL algorithms create a 
progression of flexible behavioral changes encompassing initial trial and 
error, inference regarding missing information, generation of subjective 
preferences through comparisons, and finally generalization for novel 
contexts (Eckstein and Collins, 2020). The hierarchical stages emerging 
from this model are reminiscent of Blooms’ taxonomy. Thus in experi-
ments and models, the ability to generalize arises slowly out of prior 
exploration of multiple examples. In human education, such exploration 
requires repeated AL opportunities. 

Together these experiments demonstrate how synaptic plasticity and 
its modulation by dopamine underpin cognitive as well as motor 
learning. Both neuronal and circuit mechanisms contribute to more 
robust memories and understanding when learning episodes are spaced. 

The varying time scales of dopaminergic arousal or novelty signals that 
enhance plasticity boost learning of attended, incidental or temporally 
aligned events. The associative property of synaptic plasticity plus the 
overlap of encoding among neuronal populations contribute to the 
enhanced encoding when prior knowledge is linked to current topics. 
Synaptic plasticity builds circuits for intellectual actions that over 
multiple encounters of similar examples in different contexts leads to 
deeper understanding and generalization. All of these neural mecha-
nisms may contribute to the success of active, engaging classroom 
strategies. 

5.3. Active learning benefits individuals and reduces achievement gaps 

The benefits of AL over DI that inspired this analysis have mostly 
been demonstrated at the aggregate course level (Freeman et al., 2014; 
Haak et al., 2011; Sinha and Kapur, 2021; Theobald et al., 2020). The 
significant performance differences on exams are not huge, on the order 
of 10–15%, testifying that students learn in both AL and DI situations 
(Deslauriers et al., 2019). These meta-analyses and the studies within 
them are drawn from cross-sectional comparisons of different student 
populations experiencing learning in different environments. An initial 
explanation for this difference might be that it is harder for students to 
be left out in an AL classroom. This appears to be the case for 
non-traditional students in science classes. Synaptic strengthening 
through practice and circuit mechanisms may also contribute to the 
benefits of AL. Evidence for both explanations follows. 

AL science courses ameliorate minority student underperformance. 
In a multiple year, cross-sectional study, performance among students 
qualifying for an educational opportunity program improved almost 3 
times more than other students when the introductory biology course 
transitioned from lecture to a highly structured AL format (Haak et al., 
2011). In a meta-analysis of AL in collegiate STEM courses, the 
achievement gap for minority groups decreased by about a quarter of a 
standard deviation on final exam scores with half as many failures 
(Theobald et al., 2020). More AL experiences correlated with a narrower 
gap. These results are consistent with greater student participation, 
more opportunities for individual practice, and more scaffolding in AL 
classes. Thus, AL improves outcomes for all students and reduces the 
achievement gap for those with less privileged or practiced academic 
backgrounds (Theobald et al., 2020). 

AL pedagogies also improve learning for individual students as 
demonstrated in two experiments. Using a cross-over experimental 
design and two comparable topics in undergraduate physics classes, 
students performed better on topic exams in AL classrooms than in fluent 
lectures but felt they learned more in the latter (Deslauriers et al., 2019). 
Data here were presented in aggregate form, so actual changes in indi-
vidual student achievement could not be discerned. In a second, more 
complex experiment, instructor-student pairs respectively taught and 
learned different introductory psychology concepts through either 
explaining content directly or using a scaffolded, question and answer 
Socratic approach, in sequential blocks (Pan et al., 2020). Additionally, 
instructors and students wore functional near-infrared spectroscopy 
headsets over frontal and temporal portions of the scalp to monitor 
interpersonal brain synchrony. On an immediate post-test, knowledge 
gains were higher for the scaffolded compared to the didactic content, 
with a majority of individuals showing greater retention from the So-
cratic approach. Interbrain synchrony was higher in frontal cortices 
during scaffolded compared to didactic instruction. The degree of syn-
chrony correlated with learning outcomes. Thus the active, Socratic 
questioning pedagogy produced a stronger instructor-student relation-
ship as well as more robust learning, validating the benefits of active 
learning for individual students (Pan et al., 2020). 

6. Conclusion 

No experiment in this review decodes human declarative content 
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acquisition in real time in a classroom setting with sufficient detail to 
reveal exact cellular or system level mechanisms of optimal learning and 
memory. However, parallel studies in animals and humans that are 
challenged to learn the statistical properties of experimental tasks do 
yield insights into the brain processes supporting learning. Mechanisti-
cally, plasticity, agency, and social interactions engage the RL circuit, 
hippocampus, and associated cortical networks to support and augment 
learning and memory. Behaviorally, mastery and generalization arise 
from multiple encounters with the disciplinary material, where learners 
have opportunities to manipulate content. Neurally, this entails encod-
ing the content in overlapping sets of synapses (plasticity) that gain 
value as the learners predict how to apply the content in explaining 
relationships or solving problems, exert agency, evaluate success, and 
iterate the process (RL circuit). Social interactions among students or 
between instructors and students further recruit the RL circuit. 

This review associates these mechanisms of learning and memory 
with the opposing pedagogical approaches of DI and AL. Here, DI refers 
to instructor-supplied knowledge transfer. AL encompasses opportu-
nities for students to manipulate and apply content individually or 
through social interactions. Thus, the greater student learning associ-
ated with AL over DI pedagogies (Deslauriers et al., 2019; Freeman et al., 
2014; Haak et al., 2011; Theobald et al., 2020) may be attributable to 
the greater neural ‘value’ ascribed to information gained through one’s 
own effort, evaluation, or social interactions compared to information 
obtained from lectures. DI, at least for directions, appears to preferen-
tially activate frontal-parietal structures and to rely upon WM 
(Dumontheil et al., 2011; González-García et al., 2021; Hampshire et al., 
2016; Vaidya and Badre, 2022). WM, while rapid and sufficient for 
manipulating or encoding a low cognitive load, is insufficient for 
juggling a larger load which requires evaluating and comparing new 
information with old, a slower encoding process (Collins et al., 2017). DI 
provides an environment where uncertainty is low. Instructors paint a 
definitive picture of the disciplinary world intended to support rapid 
learning. When uncertainty is low, so is episodic memory, attention and 
cognition (Monosov, 2020; Rouhani et al., 2018). In comparison, when 
uncertainty is high, episodic memory, attention and cognition are high 
as active exploration is required to resolve the uncertainty (Collins and 
Frank, 2018; Diederen et al., 2016; Monosov, 2020; Rouhani et al., 
2018). Learning rates might be slower, but retention is higher (Collins 
and Frank, 2018; Rouhani et al., 2018). This is the contribution of AL. AL 
provides an environment where uncertainty is relatively high and stu-
dents have agency to resolve it. AL provides learners with challenges 
that create RL experiences, engage the value-generating RL circuit and 
as the RL process is iterated, provide the repetitions needed for both 
synaptic plasticity and generalization. 

Content-wise, the goal of the educational system should be for stu-
dents to form mental models of the disciplinary space, complete with 
relationships and associations for applying content to real world prob-
lems. A content focused approach to learning supports DI pedagogies. 
However, the learner will not acquire the cognitive evaluation, decision 
making or application skills without practice. AL pedagogies provide 
such practice and develop motivation. The RL circuit-hippocampal in-
teractions during AL provide evaluative signals that raise the relevance 
of the associated materials and applications to ensure retention. Moti-
vation for learning derives from curiosity, a drive to perform a task 
oneself, social engagement, and social approbation. All of these intrinsic 
motivators engage the RL circuit. Extrinsic motivators such as points, 
grades or competitions also engage the RL circuit but the occasions for 
learning from graded iterations may be limited by the frequency of these 
events. Intrinsically, exerting agency to discuss, solve problems or 
answer questions within the disciplinary space, making and correcting 
mistakes, and evaluating one’s progress generate anticipatory and 
feedback signals in the RL circuit. In applying content, students engage 
in multiple passes through the material, developing connections within 
cortical networks and extracting structural commonalities that lead to 
generalization and higher order thinking. 

Classrooms should provide students with optimal learning opportu-
nities. The neuroscience explanations reviewed here support learning 
both from DI and AL pedagogical strategies. Optimally, a calculated 
balance between DI and AL is needed for learning disciplinary content 
and its appropriate application. By itself, lecturing inadequately pre-
pares learners to remember and apply content. Similarly, AL without 
contextual explanations can leave students floundering. Classroom 
material and student interactions with that material should evoke cu-
riosity and evolve such that each repetition adds or reinforces content 
and builds a more complex understanding. By utilizing AL pedagogies, 
instructors provide opportunities for practice and application in the 
classroom, engaging deeper learning mechanisms and modeling be-
haviors for independent student studying. Critically, summarizing con-
cepts, a form of DI, after each AL lesson brings everyone together with a 
common understanding. Instructors must help students recognize their 
own mistakes are not failures but opportunities to use errors as ‘learning 
signals’ to improve performance (Denervaud et al., 2020a). Emphasis 
should not be placed upon ‘getting all answers correctly’, but rather on 
flexibly providing students with opportunities to correct their own er-
rors and maximize improvement (Metcalfe, 2017). As recently as 2018, 
75% of university STEM class time was DI and only 18% of observed 
classes met criteria for being ‘student-centered’ (Stains et al., 2018). 
Shifting these proportions will improve student outcomes. At the uni-
versity level, faculty, especially neuroscientists, should understand how 
the evolving neuroscience of learning and memory can be applied to 
guide their teaching strategies. 
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González-García, C., Formica, S., Wisniewski, D., Brass, M., 2021. Frontoparietal action- 
oriented codes support novel instruction implementation. NeuroImage 226, 117608. 
https://doi.org/10.1016/j.neuroimage.2020.117608. 

Goswami, U., 2019. Cognitive Development and Cognitive Neuroscience. The Learning 
Brain. Routledge, London.  

Goswami, U., 2020. Toward realizing the promise of educational neuroscience: 
improving experimental design in developmental cognitive neuroscience studies. 
Annu. Rev. Dev. Psychol. 2, 133–155. https://doi.org/10.1146/annurev-devpsych- 
042320-100040. 

Gottlieb, J., Oudeyer, P.-Y., 2018. Towards a neuroscience of active sampling and 
curiosity. Nat. Rev. Neurosci. 19, 758–770. https://doi.org/10.1038/s41583-018- 
0078-0. 

Gruber, M.J., Gelman, B.D., Ranganath, C., 2014. States of curiosity modulate 
hippocampus-dependent learning via the dopaminergic circuit. Neuron 84, 486–496. 
https://doi.org/10.1016/j.neuron.2014.08.060. 

Gruber, M.J., Ritchey, M., Wang, S.-F., Doss, M.K., Ranganath, C., 2016. Post-learning 
hippocampal dynamics promote preferential retention of rewarding events. Neuron 
89, 1110–1120. https://doi.org/10.1016/j.neuron.2016.01.017. 

Guo, D., Chen, H., Wang, L., Yang, J., 2023. Effects of prior knowledge on brain 
activation and functional connectivity during memory retrieval. Sci. Rep. 13, 13650 
https://doi.org/10.1038/s41598-023-40966-0. 

Haak, D.C., HilleRisLambers, J., Pitre, E., Freeman, S., 2011. Increased structure and 
active learning reduce the achievement gap in introductory biology. Science 332, 
1213–1216. 

Haam, J., Yakel, J.L., 2017. Cholinergic modulation of the hippocampal region and 
memory function. J. Neurochem. 142, 111–121. https://doi.org/10.1111/ 
jnc.14052. 

Haber, S.N., Knutson, B., 2010. The reward circuit: linking primate anatomy and human 
imaging. Neuropsychopharmacology 35, 4–26. https://doi.org/10.1038/ 
npp.2009.129. 

Hamid, A.A., 2021. Dopaminergic specializations for flexible behavioral control: linking 
levels of analysis and functional architectures. Curr. Opin. Behav. Sci. 41, 175–184. 
https://doi.org/10.1016/j.cobeha.2021.07.005. 

Hamid, A.A., Frank, M.J., Moore, C.I., 2021. Wave-like dopamine dynamics as a 
mechanism for spatiotemporal credit assignment. Cell 184, 2733–2749.e16. https:// 
doi.org/10.1016/j.cell.2021.03.046. 

Hamid, A.A., Pettibone, J.R., Mabrouk, O.S., Hetrick, V.L., Schmidt, R., Vander Weele, C. 
M., Kennedy, R.T., Aragona, B.J., Berke, J.D., 2016. Mesolimbic dopamine signals 
the value of work. Nat. Neurosci. 19, 117–126. https://doi.org/10.1038/nn.4173. 

Hampshire, A., Daws, R.E., Neves, I.D., Soreq, E., Sandrone, S., Violante, I.R., 2019. 
Probing cortical and sub-cortical contributions to instruction-based learning: 
regional specialisation and global network dynamics. NeuroImage 192, 88–100. 
https://doi.org/10.1016/j.neuroimage.2019.03.002. 

Hampshire, A., Hellyer, P.J., Parkin, B., Hiebert, N., MacDonald, P., Owen, A.M., 
Leech, R., Rowe, J., 2016. Network mechanisms of intentional learning. NeuroImage 
127, 123–134. https://doi.org/10.1016/j.neuroimage.2015.11.060. 

Hansen, N., Manahan-Vaughan, D., 2014. Dopamine D1/D5 receptors mediate 
informational saliency that promotes persistent hippocampal long-term plasticity. 
Cereb. Cortex 24, 845–858. https://doi.org/10.1093/cercor/bhs362. 

Harlow, H.F., 1953. Mice, monkeys, men, and motives. Psychol. Rev. 60, 23–32. https:// 
doi.org/10.1037/h0056040. 

Hasselmo, M.E., Wyble, B.P., Wallenstein, G.V., 1996. Encoding and retrieval of episodic 
memories: role of cholinergic and GABAergic modulation in the hippocampus. 
Hippocampus 6, 693–708. https://doi.org/10.1002/(SICI)1098-1063(1996)6: 
6<693::AID-HIPO12>3.0.CO;2-W. 

Hernandez Lallement, J., Kuss, K., Trautner, P., Weber, B., Falk, A., Fliessbach, K., 2014. 
Effort increases sensitivity to reward and loss magnitude in the human brain. Soc. 
Cogn. Affect. Neurosci. 9, 342–349. https://doi.org/10.1093/scan/nss147. 

Heyes, C., 2016. Who knows? Metacognitive social learning strategies. Trends Cogn. Sci. 
20, 204–213. https://doi.org/10.1016/j.tics.2015.12.007. 

Hintiryan, H., Foster, N.N., Bowman, I., Bay, M., Song, M.Y., Gou, L., Yamashita, S., 
Bienkowski, M.S., Zingg, B., Zhu, M., Yang, X.W., Shih, J.C., Toga, A.W., Dong, H.- 
W., 2016. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114. 
https://doi.org/10.1038/nn.4332. 

Holroyd, C.B., Coles, M.G.H., 2002. The neural basis of human error processing: 
Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 
109, 679–709. https://doi.org/10.1037/0033-295X.109.4.679. 

Hood Cattaneo, K., 2017. Telling active learning pedagogies apart: from theory to 
practice. J. N. Approaches Educ. Res. NAER J. 6, 144–152. 

Horbury, S.R., Edmonds, C.J., 2021. Taking class notes by hand compared to typing: 
effects on children’s recall and understanding. J. Res. Child. Educ. 35, 55–67. 
https://doi.org/10.1080/02568543.2020.1781307. 

Hunnicutt, B.J., Jongbloets, B.C., Birdsong, W.T., Gertz, K.J., Zhong, H., Mao, T., 2016. 
A comprehensive excitatory input map of the striatum reveals novel functional 
organization. eLife 5, e19103. https://doi.org/10.7554/eLife.19103. 

Inzlicht, M., Shenhav, A., Olivola, C.Y., 2018. The effort paradox: effort is both costly and 
valued. Trends Cogn. Sci. 22, 337–349. https://doi.org/10.1016/j.tics.2018.01.007. 

Ison, M.J., Quian Quiroga, R., Fried, I., 2015. Rapid encoding of new memories by 
individual neurons in the human brain. Neuron 87, 220–230. https://doi.org/ 
10.1016/j.neuron.2015.06.016. 

James, K.H., 2017. The importance of handwriting experience on the development of the 
literate brain. Curr. Dir. Psychol. Sci. 26, 502–508. https://doi.org/10.1177/ 
0963721417709821. 

Jezzini, A., Bromberg-Martin, E.S., Trambaiolli, L.R., Haber, S.N., Monosov, I.E., 2021. 
A prefrontal network integrates preferences for advance information about uncertain 
rewards and punishments. Neuron 109, 2339–2352.e5. https://doi.org/10.1016/j. 
neuron.2021.05.013. 

Johnson, A., Varberg, Z., Benhardus, J., Maahs, A., Schrater, P., 2012. The hippocampus 
and exploration: dynamically evolving behavior and neural representations. Front. 
Hum. Neurosci. 6 https://doi.org/10.3389/fnhum.2012.00216. 

Jordan, J., Wagner, J., Manthey, D.E., Wolff, M., Santen, S., Cico, S.J., 2020. Optimizing 
lectures from a cognitive load perspective. AEM Educ. Train. 4, 306–312. https:// 
doi.org/10.1002/aet2.10389. 
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Heinze, H.-J., Rodríguez-Fornells, A., Noesselt, T., 2014. The role of reward in word 
learning and its implications for language acquisition. Curr. Biol. 24, 2606–2611. 
https://doi.org/10.1016/j.cub.2014.09.044. 

Rossato, J.I., Bevilaqua, L.R.M., Izquierdo, I., Medina, J.H., Cammarota, M., 2009. 
Dopamine controls persistence of long-term memory storage. Science 325, 
1017–1020. https://doi.org/10.1126/science.1172545. 

Rotem-Turchinski, N., Ramaty, A., Mendelsohn, A., 2019. The opportunity to choose 
enhances long-term episodic memory. Memory 27, 431–440. https://doi.org/ 
10.1080/09658211.2018.1515317. 

Rouhani, N., Norman, K.A., Niv, Y., 2018. Dissociable effects of surprising rewards on 
learning and memory. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1430–1443. https:// 
doi.org/10.1037/xlm0000518. 

Rouhani, N., Norman, K.A., Niv, Y., Bornstein, A.M., 2020. Reward prediction errors 
create event boundaries in memory. Cognition 203, 104269. https://doi.org/ 
10.1016/j.cognition.2020.104269. 

Ruff, C.C., Fehr, E., 2014. The neurobiology of rewards and values in social decision 
making. Nat. Rev. Neurosci. 15, 549–562. https://doi.org/10.1038/nrn3776. 

Ruggeri, A., Markant, D.B., Gureckis, T.M., Bretzke, M., Xu, F., 2019. Memory 
enhancements from active control of learning emerge across development. Cognition 
186, 82–94. https://doi.org/10.1016/j.cognition.2019.01.010. 

Rutishauser, U., 2019. Testing models of human declarative memory at the single-neuron 
level. Trends Cogn. Sci. 23, 510–524. https://doi.org/10.1016/j.tics.2019.03.006. 

Salamone, J.D., Correa, M., 2012. The mysterious motivational functions of mesolimbic 
dopamine. Neuron 76, 470–485. https://doi.org/10.1016/j.neuron.2012.10.021. 

Schaefer, N., Rotermund, C., Blumrich, E.-M., Lourenco, M.V., Joshi, P., Hegemann, R.U., 
Jamwal, S., Ali, N., García Romero, E.M., Sharma, S., Ghosh, S., Sinha, J.K., Loke, H., 
Jain, V., Lepeta, K., Salamian, A., Sharma, M., Golpich, M., Nawrotek, K., Paidi, R.K., 
Shahidzadeh, S.M., Piermartiri, T., Amini, E., Pastor, V., Wilson, Y., Adeniyi, P.A., 
Datusalia, A.K., Vafadari, B., Saini, V., Suárez-Pozos, E., Kushwah, N., Fontanet, P., 
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